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ABSTRACT 
The present disclosure is directed to systems and methods of 
implementing a neural network using in - memory , bit - serial , 
mathematical operations performed by a pipelined SRAM 
architecture ( bit - serial PISA ) circuitry disposed in on - chip 
processor memory circuitry . The on - chip processor memory 
circuitry may include processor last level cache ( LLC ) 
circuitry . The bit - serial PISA circuitry is coupled to PISA 
memory circuitry via a relatively high - bandwidth connec 
tion to beneficially facilitate the storage and retrieval of 
layer weights by the bit - serial PISA circuitry during execu 
tion . Direct memory access ( DMA ) circuitry transfers the 
neural network model and input data from system memory 
to the bit - serial PISA memory and also transfers output data 
from the PISA memory circuitry to system memory cir 
cuitry . Thus , the systems and methods described herein 
beneficially leverage the on - chip processor memory cir 
cuitry to perform a relatively large number of vector / tensor 
calculations without burdening the processor circuitry . 
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LOW SYNCH DEDICATED ACCELERATOR 
WITH IN - MEMORY COMPUTATION 

CAPABILITY 

TECHNICAL FIELD 
[ 0001 ] The present disclosure relates to processor archi 
tecture that features in - memory computation capability 
within processor memory . 

BACKGROUND 
[ 0002 ] Recognizing that data transfer rates from storage 
such as a magnetic or solid - state storage device is relatively 
slow , in - memory processing relies upon the transfer of data 
relevant to a decision - making process from such storage 
devices to system memory having a comparatively much 
higher data transfer rate . In memory processing is particu 
larly useful in applications where relatively large quantities 
of intermediate decision - making data are generated . Such 
intermediate decision - making data is frequently written to 
storage then retrieved for subsequent processing . Neural 
networks , such as recursive neural networks may generate a 
large volume of intermediate data that is passed from layer 
to layer within the network . In addition , each layer may rely 
upon weight factors that are retrieved from data storage and , 
in the case of recursive neural networks updated and written 
to data storage . With an increasing dependence on graphics 
intensive processing using smaller form factor portable and 
mobile - platform processor - based devices , the ability to per 
form fixed or floating point mathematical operations using 
in - memory processing improves speed , efficiency an accu 
racy of neural network 

cal operations associated with a recurrent neural network 
model , in accordance with at least one embodiment 
described herein ; 
10007 ] FIG . 4 is a high - level flow diagram of an illustra 
tive method of implementing a recurrent neural network 
using pipelined SRAM architecture ( bit - serial PISA ) cir 
cuitry implemented in on - chip processor memory circuitry , 
in accordance with at least one embodiment described 
herein ; 
[ 0008 ] FIG . 5 is a high - level flow diagram of an illustra 
tive method of transferring output data generated at the 
output layer of the multi - layer neural network from the 
bit - serial PISA circuitry to system memory circuitry , in 
accordance with at least one embodiment described herein ; 
[ 0009 ] FIG . 6 is a high - level flow diagram of an illustra 
tive method of compiling the high - level language neural 
network model and / or input data to the instruction set 
architecture ( ISA ) implemented by the bit - serial PISA cir 
cuitry using high - level compiler circuitry and low - level 
compiler circuitry , in accordance with at least one embodi 
ment described herein ; 
[ 0010 ] FIGS . 7A - 7B are block diagrams illustrating a 
generic vector friendly instruction format and instruction 
templates thereof according to embodiments of the inven 
tion ; 
[ 0011 ] FIGS . 8A - D are block diagrams illustrating an 
exemplary specific vector friendly instruction format 
according to embodiments of the invention ; 
[ 0012 ] FIG . 9 is a block diagram of a register architecture 
according to one embodiment of the invention ; 
[ 0013 ] FIG . 10A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . 
[ 0014 ] FIG . 10B is a block diagram illustrating both an 
exemplary embodiment of an in - order architecture core and 
an exemplary register renaming , out - of - order issue / execu 
tion architecture core to be included in a processor according 
to embodiments of the invention ; 
[ 0015 ] FIGS . 11A - B illustrate a block diagram of a more 
specific exemplary in order core architecture , which core 
would be one of several logic blocks ( including other cores 
of the same type and / or different types ) in a chip ; 
[ 0016 ] FIG . 12 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the invention ; 
[ 0017 ] FIGS . 13 , 14 , 15 , and 16 are block diagrams of 
exemplary computer architectures ; and 
[ 0018 ] . FIG . 17 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 
[ 0019 ] Although the following Detailed Description will 
proceed with reference being made to illustrative embodi 
ments , many alternatives , modifications and variations 
thereof will be apparent to those skilled in the art . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0003 ] Features and advantages of various embodiments 
of the claimed subject matter will become apparent as the 
following Detailed Description proceeds , and upon refer 
ence to the Drawings , wherein like numerals designate like 
parts , and in which : 
[ 0004 ] FIG . 1 is a block diagram of an illustrative system 
in which a semiconductor package includes processor cir 
cuitry and on - chip processor memory that includes static 
random access memory ( " SRAM ” ) configured to form pipe 
lined SRAM architecture circuitry ( “ bit - serial PISA cir 
cuitry ' ' ) capable of performing bit - serial , in - memory , math 
ematical operations defined by a multi - layer neural network 
model , in accordance with at least one embodiment 
described herein ; 
[ 0005 ) FIG . 2 is a block diagram of an illustrative in 
memory neural network system where the on - chip processor 
memory includes bit - serial PISA circuitry formed using a 
plurality SRAM circuitry blocks ( hereinafter , “ SRAM 
arrays ” ) and in which each SRAM array includes respective 
microcontroller circuitry to configure and / or control the 
operation of the SRAM array , in accordance with at least one 
embodiment described herein ; 
[ 0006 ] FIG . 3 is a schematic diagram of an illustrative 
electronic , processor - based , device that includes a semicon 
ductor package that includes processor circuitry and on - chip 
processor memory circuitry ( e . g . , SRAM memory such as 
cache memory circuitry or LLC memory circuitry ) configu 
rable to provide the pipelined SRAM architecture ( bit - serial 
PISA ) circuitry to perform bit - serial , in - memory mathemati 

DETAILED DESCRIPTION 

[ 0020 ] Recurrent neural networks process information 
sequentially , each layer of the neural network receives 
information ( as input ) from the preceding layer and passes 
along ( as output ) information to the subsequent neural 
network layer . Each of the layers included in the recurrent 
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neural network incorporate all of the preceding information 
into the current calculation ( e . g . , information determined 
from to to tn - l into the decision making at time = tn ) . Recurrent 
neural networks have demonstrated success in many non 
linear programming tasks . Recurrent neural networks are 
flexible and find use in language modeling and generating 
text , machine translation , speech recognition , and object 
location and identification . 
[ 0021 ] Given the relatively large tensors generated by a 
recurrent neural network , the mathematical burden placed 
on processors is significant - slowing the output of the 
network . While delayed output may be acceptable in some 
situations , in many situations , such as object detection and 
avoidance in autonomous vehicles , an output delay is unac 
ceptable and potentially hazardous . While expanding pro - 
cessor bandwidth by increasing clock speeds or multiplying 
the number of processing cores provide a potential solution , 
such solutions are costly and may increase the size and / or 
power consumption of a portable electronic device . 
[ 0022 ] Another solution involves the use of memory to 
perform in - memory processing . For example , performing 
in - situ vector arithmetic operations within static random 
access memory ( SRAM ) arrays . The resulting architecture 
provides massive parallelism by repurposing thousands , or 
even more , of SRAM arrays into vector computation units . 
However , while such SRAM arrays are beneficial , over 
speed of the network is compromised by the sheer number 
of memory operations needed to support the implementation 
of the recurrent neural network . 
[ 0023 ] The systems and methods described herein benefi 
cially and advantageously increase the speed and efficiency 
of the in - memory processing by implementing the recurrent 
neural network model in on - chip processor memory ( e . g . , in 
the last level cache ( LLC ) ) as a pipeline of SRAM arrays 
( hereinafter a “ PISA ” architecture ) and by preloading the 
model and weights into memory locations having a high 
bandwidth pathway to the on - chip processor memory . Mini 
mizing off - chip data transfer operations such as reads from 
memory and stores to memory improves the responsiveness 
of the recurrent neural network . 
[ 0024 ] The systems and methods described herein provide 
for in - memory processing of recurrent neural networks 
using on - chip processor memory to : build recurrent neural 
network structure ; store weights associated with the multi 
layer recurrent neural network model ; perform multi - layer 
computations associated with the neural network , and store 
intermediate output data generated by each of the neural 
network layers . The systems and methods described herein 
make use of pipelined static random access memory 
( SRAM ) blocks in the on - chip processor memory . With 
bit - serial PISA , each of the pipelined SRAM arrays includes 
microcontroller circuitry that , using simple logical opera 
tions ( e . g . , AND / NOR ) performed directly on the bit lines , 
causes each of the SRAM arrays to perform various math 
ematical operations ( add , multiply , reduction , etc . ) that 
include in a layer of a multi - layer neural network , such as a 
recurrent neural network . 
[ 0025 ] The systems and methods described herein make 
use of direct memory access ( DMA ) control circuitry to 
transfer layer weights and / or input information that are 
associated with or define a multi - layer neural network from 
system memory to either : one or more storage locations 
having a high bandwidth data transfer capability with the 
on - chip processor memory ; or directly to the on - chip pro 

cessor memory . The DMA control circuitry also transfers 
output from the output layer of the recurrent neural network 
to system memory . 
100261 . The systems and methods described herein typi 
cally receive the recurrent neural network model and input 
in a high level language provided by the system user . The 
systems and methods described herein include processor 
circuitry having compiler circuitry to convert at least a 
portion of the recurrent neural network model and input 
from the high level language to a domain specific language 
( DSL ) . The processor circuitry further includes additional 
compiler circuitry to convert at least a portion of the 
recurrent neural network model and input from the DSL to 
an instruction set architecture ( ISA ) suitable for configuring 
the bit - serial PISA disposed in the on - chip processor 
memory . 
[ 0027 ] A system that includes bit - serial PISA circuitry to 
implement in - memory processing of a neural network using 
on - chip processor memory circuitry is provided . The system 
may include : processor circuitry ; on - chip processor memory 
circuitry that includes a plurality of SRAM arrays , each of 
the SRAM arrays including microcontroller circuitry ; neural 
network control circuitry to : receive an instruction set archi 
tecture ( ISA ) that includes data representative of a multi 
layer neural network model and one or more neural network 
data inputs ; form serially connected bit - serial PISA circuitry 
using at least a portion of the plurality of SRAM arrays , 
wherein each of the SRAM arrays included in the portion of 
the plurality of SRAM arrays represents a single layer of the 
multi - layer neural network model ; cause a transfer of the 
ISA representative of each layer of the multi - layer neural 
network model to the microcontroller circuitry in a respec 
tive one of the portion of the plurality of SRAM arrays ; 
cause a bidirectional transfer of neural network layer 
weights between the PISA memory circuitry and the portion 
of the plurality of SRAM arrays included in the serially 
connected bit - serial PISA circuitry ; cause a transfer of the 
neural network input data from the PISA memory circuitry 
to the bit - serial PISA circuitry ; and cause a transfer of output 
data from the serially connected bit - serial PISA circuitry to 
the PISA memory circuitry . 
[ 0028 ] An in - memory neural network processing method 
is provided . The method may include : receiving , by neural 
network control circuitry coupled to processor circuitry , an 
instruction set architecture ( ISA ) that includes a multi - layer 
neural network model and neural network input data ; seri 
ally coupling , by the neural network control circuitry , a 
plurality of SRAM arrays included in on - chip processor 
memory circuitry to provide bit - serial PISA circuitry , each 
of the plurality of SRAM arrays representing a single layer 
of the multi - layer neural network model and including 
respective microcontroller circuitry ; causing , by the neural 
network control circuitry , a transfer of the ISA representative 
of each layer of the multi - layer neural network model to the 
microcontroller circuitry in a respective one of the plurality 
of SRAM arrays ; causing , by the neural network control 
circuitry , a bidirectional transfer of neural network layer 
weights between each of the serially connected SRAM 
arrays forming the bit - serial PISA circuitry and PISA 
memory circuitry coupled to the bit - serial PISA circuitry via 
one or more high - bandwidth connections ; causing , by the 
neural network control circuitry , a transfer of the ISA 
representative of the neural network input data from the 
PISA memory circuitry to the bit - serial PISA circuitry ; and 
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causing , by the neural network control circuitry , the bit - 
serial PISA circuitry to perform bit - serial , in - memory , neural 
network processing using the plurality of SRAM arrays ; and 
causing , by the neural network control circuitry , a transfer of 
neural network output data from the bit - serial PISA circuitry 
to the PISA memory circuitry . 
10029 ] A non - transitory machine - readable storage 
medium having instructions is provided . The instructions , 
when executed by neural network control circuitry , may 
cause the neural network control circuitry to : receive , from 
communicably coupled processor circuitry , an instruction 
set architecture ( ISA ) that includes a multi - layer neural 
network model and neural network input data ; serially 
couple a plurality of static random access memory ( SRAM ) 
arrays included in on - chip processor memory circuitry to 
provide pipelined SRAM architecture ( bit - serial PISA ) cir 
cuitry , each of the plurality of SRAM arrays representing a 
single layer of the multi - layer neural network model and 
including respective microcontroller circuitry ; cause a trans 
fer of the ISA representative of each layer of the multi - layer 
neural network model to the microcontroller circuitry in a 
respective one of the plurality of SRAM arrays ; cause a 
bidirectional transfer of neural network layer weights 
between each of the serially connected SRAM arrays form 
ing the bit - serial PISA circuitry and PISA memory circuitry 
coupled to the bit - serial PISA circuitry via one or more 
high - bandwidth connections ; cause a transfer of the ISA 
representative of the neural network input data from the 
PISA memory circuitry to the bit - serial PISA circuitry ; cause 
the bit - serial PISA circuitry to perform bit - serial , 
in - memory , neural network processing using the plurality of 
SRAM arrays ; and cause a transfer of neural network output 
data from the bit - serial PISA circuitry to the PISA memory 
circuitry . 
0030 ] An in - memory neural network processing system 

is provided . The system may include : means for receiving an 
instruction set architecture ( ISA ) from processor circuitry , 
the ISA including a multi - layer neural network model and 
neural network input data ; means for serially coupling a 
plurality of static random access memory ( SRAM ) arrays 
included in on - chip processor memory circuitry to provide 
pipelined SRAM architecture ( bit - serial PISA ) circuitry , 
each of the plurality of SRAM arrays representing a single 
layer of the multi - layer neural network model and including 
respective microcontroller circuitry ; means for causing a 
transfer of the ISA representative of each layer of the 
multi - layer neural network model to the microcontroller 
circuitry in a respective one of the plurality of SRAM arrays ; 
means for causing a bidirectional transfer of neural network 
layer weights between each of the serially connected SRAM 
arrays forming the bit - serial PISA circuitry and PISA 
memory circuitry coupled to the bit - serial PISA circuitry via 
one or more high - bandwidth connections ; means for causing 
a transfer of the ISA representative of the neural network 
input data from the PISA memory circuitry to the bit - serial 
PISA circuitry ; means for causing the bit - serial PISA cir 
cuitry to perform bit - serial , in - memory , neural network 
processing using the plurality of SRAM arrays ; and means 
for causing a transfer of neural network output data from the 
bit - serial PISA circuitry to the PISA memory circuitry . 
[ 0031 ] An electronic device capable of performing in - 
memory neural network processing using bit - serial PISA 
circuitry implemented in on - chip processor memory cir - 
cuitry is provided . The electronic device may include : a 

circuit board ; processor circuitry coupled to the circuit 
board ; on - chip processor memory circuitry that includes a 
plurality of SRAM arrays , each of the SRAM arrays includ 
ing microcontroller circuitry ; bit - serial PISA circuitry 
coupled to the on - chip processor memory circuitry via one 
or more high - bandwidth connections ; system memory ; 
direct memory access control circuitry ; and neural network 
control circuitry to : receive an instruction set architecture 
( ISA ) that includes data representative of a multi - layer 
neural network model and one or more neural network data 
inputs ; form serially connected bit - serial PISA circuitry 
using at least a portion of the plurality of SRAM arrays , 
wherein each of the SRAM arrays included in the portion of 
the plurality of SRAM arrays represents a single layer of the 
multi - layer neural network model ; cause a transfer of the 
ISA representative of each layer of the multi - layer neural 
network model to the microcontroller circuitry in a respec 
tive one of the portion of the plurality of SRAM arrays ; 
cause a bidirectional transfer of neural network layer 
weights between the PISA memory circuitry and the portion 
of the plurality of SRAM arrays included in the serially 
connected bit - serial PISA circuitry via the high - bandwidth 
connection ; cause a transfer of the neural network input data 
from the PISA memory circuitry to the bit - serial PISA 
circuitry ; and cause a transfer of output data from the serially 
connected bit - serial PISA circuitry to the PISA memory 
circuitry . 
[ 0032 ] As used herein , the term “ on - chip ” or elements , 
components , systems , circuitry , or devices referred to as 
“ on - chip ” include such items integrally fabricated with the 
processor circuitry ( e . g . , a central processing unit , or CPU , 
in which the " on - chip ” components are included , integrally 
formed , and / or provided by CPU circuitry ) or included as 
separate components formed as a portion of a multi - chip 
module ( MCM ) or system - on - chip ( SOC ) . 
[ 0033 ] As used herein , the term “ processor cache ” and 
" cache circuitry ” refer to cache memory present within a 
processor or central processing unit ( CPU ) package . Such 
processor cache may variously be referred to , and should be 
considered to include , without limitation , Level 1 ( L1 ) 
cache , Level 2 ( L2 ) cache , Level 3 ( L3 ) cache , and / or last or 
lowest level cache ( LLC ) . 
[ 0034 ] FIG . 1 is a block diagram of an illustrative system 
100 in which a semiconductor package 110 includes pro 
cessor circuitry 120 and on - chip processor memory 130 
incorporating pipelined static random access memory archi 
tecture circuitry ( hereinafter , “ bit - serial PISA circuitry ' ' ) 140 
capable of performing bit - serial , in - memory , mathematical 
operations associated with a multi - layer neural network 150 , 
in accordance with at least one embodiment described 
herein . In embodiments , PISA memory circuitry 160 couples 
to the semiconductor package 110 via a relatively high 
bandwidth connection 172 . System memory circuitry 170 
couples to the semiconductor package 110 and to the PISA 
memory circuitry 130 via relative low bandwidth connec 
tions 172 and 174 , respectively . Input / output ( I / O ) interface 
circuitry 180 couples to the semiconductor package 110 via 
one or more connections 180 . 
[ 0035 ] In operation , a system user provides information 
and / or data representative of a multi - layer neural network 
model and / or multi - layer neural network input data to the 
system 100 via the I / O interface circuitry 180 . Using the 
supplied model and inputs , the processor circuitry 120 
directly or indirectly configures the bit - serial PISA circuitry 
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140 in the on - chip processor memory 130 to provide the 
neural network 150 . In embodiments , the model and / or the 
inputs are transferred to the on - chip processor memory 130 
via direct memory access ( “ DMA ” ) . The processor circuitry 
120 directly or indirectly initiates or causes a transfer of the 
weights associated with the neural network model from the 
system memory circuitry 170 to the PISA memory circuitry 
160 . In embodiments , some or all of the neural network layer 
weights are transferred between the system memory cir - 
cuitry 170 and the PISA memory circuitry 160 via DMA . 
10036 ] As the neural network 150 executes , the data 
representative of the neural network layer weights and 
intermediate input / output values are rapidly transferred 
between the on - chip processor memory circuitry 130 and the 
PISA memory circuitry 160 via the relatively high band 
width connection 162 . In embodiments , the PISA memory 
circuitry 160 is disposed in whole or in part within the 
on - chip processor memory circuitry 130 . In other embodi 
ments , the PISA memory circuitry 160 may be disposed 
proximate the semiconductor package 110 , for example 
collocated with the semiconductor package 110 in a multi 
chip module or similar . The neural network 150 transfers 
output to the PISA memory circuitry 160 . The use of the 
bit - serial PISA circuitry 140 advantageously increases the 
speed of the neural network 150 since all or a portion of the 
neural network layer weights and intermediate input / output 
data are stored or otherwise retained in PISA memory 
circuitry 160 and / or in the on - chip processor memory cir 
cuitry 130 . The use of the bit - serial PISA circuitry 140 also 
beneficially enhances overall system performance since data 
transfers between the system memory circuitry 170 and the 
PISA memory circuitry 160 are accomplished via DMA . The 
above operations may be represented in system level 
pseudo - code by : 

[ 0037 ] 1 . init _ system ( system initialization ) ; 
[ 0038 ] 2 . init _ dma ( initiate data transfer from system 
memory circuitry to PISA memory circuitry via DMA ) ; 

[ 0039 ] 3 . load _ weights ( load layer weights into neural 
network model ) ; 

10040 ] 4 . load _ layer _ instructions ; 
[ 0041 ] 5 . compute _ bit - serial PISA ( compute neural net 
work output ) . 

[ 0042 ] The processor circuitry 120 may include any num 
ber and / or combination of currently available and / or future 
developed electronic components , semiconductor devices , 
and / or logic elements capable of executing instructions . The 
processor circuitry 120 may include any of a wide variety of 
commercially available processors , including without limi 
tation , an AMD Athlon® , Duron® or Opteron® processor ; 
an ARM® application , embedded and secure processors ; an 
IBM® and / or Motorola® DragonBall® or PowerPC® pro 
cessor ; an IBM and / or Sony® Cell processor ; or an Intel® 
Celeron® , Core ( 2 ) Duo® , Core ( 2 ) Quad® , Core i3® , Core 
i5® , Corei7® , Atom® , Itanium® , Pentium® Xeon® or 
XScale® processor . Further , one or more of the processor 
circuits 120 may comprise a multi - core processor ( whether 
the multiple cores coexist on the same or separate dies ) , 
and / or a multi - processor architecture of some other variety 
by which multiple physically separate processors are in 
some way linked 
[ 0043 ] The processor circuitry 120 may execute one or 
more instructions and / or may cause one or more other 
systems , sub - systems , modules , devices , or circuits to 
execute one or more instructions that cause the configuration 

of at least a portion of the on - chip processor memory 
circuitry 130 to provide the bit - serial PISA circuitry 140 that 
provides the hardware to implement the multi - layer neural 
network 150 . The processor circuitry 120 may receive , via 
the I / O interface circuitry 180 , the user supplied neural 
network model and / or the user supplied neural network 
input data . Based on the network model and / or the neural 
network input data , the processor circuitry 120 generates 
instructions in accordance with an instruction set architec 
ture ( “ ISA ” ) that is used by the PISA circuitry 140 to 
implement the neural network 150 in the on - chip processor 
memory circuitry 130 . The processor circuitry 120 may 
execute instructions that directly or indirectly cause the 
transfer of layer weights and / or instructions executable by 
the bit - serial PISA circuitry 140 from the system memory 
circuitry 170 to the PISA memory circuitry 160 . The pro 
cessor circuitry 120 may execute instructions that directly or 
indirectly cause the transfer of layer weights and / or layer 
input / output data between the bit - serial PISA circuitry 140 
and the PISA memory circuitry 160 . 
[ 0044 ] The on - chip processor memory 130 may include 
any number and / or combination of currently available and / 
or future developed electrical components , semiconductor 
devices , and / or logic elements capable of storing or other 
wise retaining information and / or data . All or a portion of 
the on - chip processor memory circuitry 130 may be formed 
using static random access memory , or SRAM , circuitry . All 
or a portion of the on - chip processor memory circuitry 130 
may include processor cache memory , such as processor last 
level cache ( LLC ) memory circuitry . The on - chip processor 
memory circuitry 130 stores or otherwise retains the bit 
serial PISA circuitry 140 that implements the neural network 
150 . In embodiments , the on - chip processor memory cir 
cuitry 130 may include LLC memory circuitry having a 
storage capacity of : 8 megabytes ( MB ) or less ; 16 MB or 
less ; 32 MB or less ; 64 MB or less , or 128 MB or less . 
[ 0045 ] In embodiments , all or a portion of the on - chip 
processor memory circuitry 130 may be communicably 
coupled to the processor circuitry 120 . In other embodi 
ments , all or a portion of the on - chip processor memory 
circuitry 130 may be shared between multiple processor 
circuits 120 , - 120n . In embodiments , the on - chip processor 
memory circuitry 130 may store information and / or data as 
a cache line , for example , as a 64 - byte cache line . The 
on - chip processor memory circuitry 130 may bidirectionally 
communicate information and / or data to the processor cir 
cuitry 120 . 
[ 0046 ] The bit - serial PISA circuitry 140 includes a plu 
rality of SRAM arrays disposed within the on - chip processor 
memory circuitry 130 . The plurality of SRAM arrays form 
ing the bit - serial PISA circuitry are communicably coupled 
in series to provide the input layer , output layer , and inter 
vening hidden layers of the neural network 150 . The bit 
serial PISA circuitry 140 may include any number and or 
combination of SRAM arrays , where each SRAM array 
provides n - memory processing for the mathematical opera 
tions associated with a single layer in the neural network 
150 . For example , a five layer recurrent neural network 150 
( one input layer , one output layer , three hidden layers ) would 
be represented in bit - serial PISA circuitry 140 as five 
sequentially coupled SRAM arrays . The bit - serial PISA 
circuitry 140 bidirectionally couples to and communicates 
with the PISA memory circuitry 160 via the relatively high 
bandwidth connection 162 . In embodiments , the bit - serial 
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PISA circuitry 140 may store all or a portion of the interim 
data generated by one or more neural network layers ( i . e . 
one or more SRAM arrays ) in the PISA memory circuitry 
160 . 
[ 0047 ] The PISA memory circuitry 160 includes any num 
ber and / or combination of currently available and / or future 
developed electrical components , semiconductor devices , 
and / or logic elements capable of storing or otherwise retain 
ing information and / or data . The PISA memory circuitry 160 
is communicably coupled to the bit - serial PISA circuitry 140 
via a bus or similar connection 162 that provides a relatively 
high bandwidth coupling ( i . e . , a coupling that provides a 
relatively high data transfer rate ) between the bit - serial PISA 
circuitry 140 and the PISA memory circuitry 160 . The PISA 
memory circuitry 160 stores or otherwise retains informa 
tion and / or data used by the neural network 150 . Nonlim 
iting examples of such information and / or data include : the 
neural network mode ; neural network weighting factors ; 
neural network input data ; neural network output data ; 
and / or neural network intermediate data . In embodiments , 
the on - chip processor memory circuitry 130 provides all or 
a portion of the PISA memory circuitry 160 . In embodi 
ments , the PISA memory circuitry 160 may be disposed at 
least in part in , on , or about the semiconductor package 110 . 
In embodiments , all or a portion of the PISA memory 
circuitry 160 may be off - chip , disposed external to the 
semiconductor package 110 . In embodiments , an intercon 
nect , such as a ring interconnect , serially interconnects at 
least a portion of the SRAM arrays used to provide the 
bit - serial , pipelined SRAM architecture ( PISA ) circuitry 140 
used to implement the neural network 150 . 
[ 0048 ] The bit - serial PISA memory 160 is communicably 
coupled to the system memory circuitry 170 via a bus or 
similar connection 174 that provides a relatively low band 
width pathway ( i . e . , a relatively low data transfer rate ) 
between the system memory circuitry 170 and the PISA 
memory circuitry 160 . Data transfer between the system 
memory circuitry 170 and the PISA memory circuitry may 
occur via direct memory access ( DMA ) , bypassing the 
processor circuitry 120 and freeing the processor circuitry 
120 for other tasks . In embodiments , the bit - serial PISA 
circuitry 140 writes the neural network output to the PISA 
memory circuitry 160 and transfers the neural network 
output via DMA to the system memory circuitry 170 . 
[ 0049 ] The system memory circuitry 170 may include any 
number and / or combination of currently available and / or 
future developed electronic components , semiconductor 
devices , and / or logic elements capable of storing or other 
wise retaining information and / or data . The system memory 
circuitry 170 is communicably coupled to the processor 
circuitry 120 and / or to the semiconductor package 110 via a 
bus or similar connection 172 that provides a relatively low 
bandwidth pathway ( i . e . , a relatively low data transfer rate ) 
between the system memory circuitry 170 and the processor 
circuitry 120 and / or to the semiconductor package 110 . 
[ 0050 ] The system memory circuitry 170 may be based on 
any of wide variety of information storage technologies , 
possibly including volatile technologies requiring the unin 
terrupted provision of electric power , and possibly including 
technologies entailing the use of machine - readable storage 
media that may be removable , or that may not be removable . 
Thus , the system memory circuitry 170 may include any of 
a wide variety of types of storage device , including without 
limitation , read - only memory ( ROM ) , random - access 

memory ( RAM ) , dynamic RAM ( DRAM ) , Double - Data 
Rate DRAM ( DDR - DRAM ) , synchronous DRAM 
( SDRAM ) , static RAM ( SRAM ) , programmable ROM 
( PROM ) , erasable programmable ROM ( EPROM ) , electri 
cally erasable programmable ROM ( EEPROM ) , flash 
memory , polymer memory ( e . g . , ferroelectric polymer 
memory ) , ovonic memory , phase change or ferroelectric 
memory , silicon - oxide - nitride - oxide - silicon ( SONOS ) 
memory , magnetic or optical cards , one or more individual 
ferromagnetic disk drives , or a plurality of storage devices 
organized into one or more arrays ( e . g . , multiple ferromag 
netic disk drives organized into a Redundant Array of 
Independent Disks array , or RAID array ) . It should be noted 
that although the system memory circuitry 170 is depicted as 
a single block in FIG . 1 , the system memory circuitry 170 
may include multiple storage devices that may be based on 
differing storage technologies . 
[ 0051 ] The input / output interface circuitry 180 includes 
any number and / or combination of currently available and / 
or future developed electronic components , semiconductor 
devices , and / or logic elements capable of receiving input 
data from one or more input devices and / or communicating 
output data to one or more output devices . In embodiments , 
a system user provides neural network model and / or input 
data using one or more input devices . The user may provide 
the neural network model and / or input data in a high - level 
language that is converted by the processor circuitry 120 to 
an instruction set architecture ( ISA ) used to configure the 
bit - serial PISA circuitry 140 . 
[ 0052 ] FIG . 2 is a block diagram of an illustrative in 
memory neural network system 200 in which the on - chip 
processor memory 130 provides bit - serial PISA circuitry 
140 that includes a plurality of SRAM arrays 240 , - 240 . 
( collectively , “ SRAM arrays 240 ” ) each having respective 
microcontroller circuitry 250 , - 250n ( collectively , “ SRAM 
microcontroller circuitry 250 ” ) , in accordance with at least 
one embodiment described herein . As depicted in FIG . 2 , the 
system 200 may include neural network control circuitry 
210 and direct memory access control circuitry 220 . Also as 
depicted in FIG . 2 , the processor circuitry 120 includes 
high - level compiler circuitry 230A to compile the high - level 
language , user supplied , neural network model and / or input 
data to an intermediate domain specific language ( DSL ) . The 
processor circuitry 120 additionally includes low - level com 
piler circuitry 230B to compile the intermediate DSL neural 
network model and / or input to an instruction set architecture 
( IS ) used to configure the neural network 150 in the bit - serial 
PISA circuitry 140 . 
[ 0053 ] The bit - serial PISA circuitry 140 includes the plu 
rality of SRAM arrays 240 . Each of the plurality of SRAM 
arrays 240 serially conductively couples to another of the 
SRAM arrays 240 . Each of the SRAM arrays 240 represents 
one layer of a recurrent neural network 150 . The microcon 
troller circuitry 250 in each SRAM array 240 configures the 
respective SRAM array to perform the mathematical opera 
tions , for example hit - serial computations , associated with 
the recurrent neural network layer represented by the SRAM 
array . In embodiments , the on - chip processor memory cir 
cuitry 130 may be configured to include any number of 
SRAM arrays 240 . For example , the on - chip processor 
memory circuitry 130 be configured to include : 256 or more 
SRAM arrays ; 512 or more SRAM arrays ; 1024 or more 
SRAM arrays ; 2048 or more SRAM arrays ; 4096 or more 
SRAM arrays ; or 8192 or more SRAM arrays . In embodi 
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ments , each of the plurality of SRAM arrays 240 will have 
the same size . For example , each of the plurality of SRAM 
arrays 240 may include : a 4 KB array ; an 8 KB array ; a 16 
KB array ; a 32 KB array ; or a 64 KB array . 
[ 0054 ] The neural network control circuitry 210 includes 
any number and / or combination of currently available and 
or future developed electronic components , semiconductor 
devices , and / or logic elements capable of providing the 
recurrent neural network model to the SRAM microcon - 
trollers 250 , controlling the flow of information and / or data 
between the bit - serial PISA circuitry 140 , PISA memory 
circuitry 160 , and / or system memory circuitry 170 ; and / or 
controlling the flow , transfer , or communication of input 
data to and / or output data from the recurrent neural network 
150 . In embodiments , the processor circuitry 120 provides 
all or a portion of the neural network control circuitry 210 . 
In other embodiments , the neural network control circuitry 
210 may include stand - alone controller circuitry . 
[ 0055 ] The DMA control circuitry 220 includes any num 
ber and / or combination of currently available and / or future 
developed electronic components , semiconductor devices , 
and / or logic elements capable of controlling the bidirec 
tional flow of information and / or data between the system 
memory circuitry 170 and the PISA memory circuitry 160 . 
[ 0056 ] The high - level compiler circuitry 230A includes 
any number and / or combination of currently available and / 
or future developed electronic components , semiconductor 
devices , and / or logic elements capable of converting a 
neural network model and / or input data from a user supplied 
high - level language to an intermediate domain specific 
language ( DSL ) , such as a data - flow graph of layer descrip 
tors . The processor circuitry 120 may provide some or all of 
the high - level compiler circuitry 230A . 
[ 0057 ] The low - level compiler circuitry 230B includes 
any number and / or combination of currently available and / 
or future developed electronic components , semiconductor 
devices , and / or logic elements capable of converting the 
neural network model and / or input data from the interme 
diate domain specific language ( DSL ) to an instruction set 
architecture ( ISA ) . In embodiments , the neural network 
control circuitry 210 uses the neural network model and / or 
input data ISA to configure the recurrent neural network 150 . 
In embodiments , each of the microcontroller circuits 250 
uses the neural network model and / or input data ISA to 
configure their respective SRAM array 240 to form the 
recurrent neural network 150 . The processor circuitry 120 
may provide some or all of the low - level compiler circuitry 
230B . 
10058 ] In operation , after the low - level compiler circuitry 
230B converts the recurrent neural network model and / or 
input data to the ISA , the model data representative of each 
layer of the recurrent neural network 150 is loaded into the 
respective SRAM array 240 . In embodiments , the low - level 
compiler circuitry 230B directly or indirectly provides , 
transfers , or otherwise communicates the recurrent neural 
network model data to the microcontroller circuitry 250 in 
the respective SRAM array 240 . In other embodiments , the 
neural network control circuitry 210 provides , transfers , or 
otherwise communicates the recurrent neural network model 
data to the microcontroller circuitry 250 in the respective 
SRAM array 240 . 
[ 0059 ] In embodiments , the neural network control cir 
cuitry 210 causes the DMA control circuitry 220 to transfer 
at least a portion of the layer weights and / or layer inputs 

from the system memory circuitry 170 to the PISA memory 
circuitry 160 . In other embodiments , the microcontroller 
circuitry 250 in some or all of the SRAM arrays 240 causes 
the DMA control circuitry 220 to transfer at least a portion 
of the layer weights and / or layer inputs from the system 
memory circuitry 170 to the PISA memory circuitry 160 . In 
other embodiments , the processor circuitry 120 causes the 
DMA control circuitry 220 to transfer at least a portion of the 
layer weights and / or layer inputs from the system memory 
circuitry 170 to the PISA memory circuitry 160 . Upon 
receipt in the PISA memory circuitry 160 , the neural net 
work control circuitry 210 and / or the microcontroller cir 
cuitry 250 in some or all of the SRAM arrays 240 causes the 
transfer of the data representative of the layer weights from 
the PISA memory circuitry 160 to respective ones of the 
plurality of SRAM arrays 240 . 
100601 Upon configuration of the recurrent neural network 
in the bit - serial PISA circuitry 140 , in some embodiments , 
the processor circuitry 120 may be placed into a sleep or 
standby mode while the DMA control circuitry continues to 
transfer data to the PISA memory circuitry 260 and / or to the 
bit - serial PISA circuitry 140 . The bit - serial PISA circuitry 
140 then loops over mini - batches by loading inputs for the 
first network layer from the PISA memory circuitry 160 and , 
for each serially subsequent layer , from the buffer in the 
immediately preceding SRAM array ( e . g . , input for SRAM 
array 240 , is loaded from the PISA memory circuitry 160 via 
the high bandwidth connection 162 , and input for SRAM 
array 240 , is loaded from the buffer of SRAM array 240 , 1 ) . 
Using bit - serial computation , each of the plurality of SRAM 
arrays 240 determines the output for each respective layer of 
the recurrent neural network 150 and stores the output in a 
respective output buffer within the SRAM array 240 . 
[ 0061 ] FIG . 3 is a schematic diagram of an illustrative 
electronic , processor - based , device 300 that includes a semi 
conductor package 110 that includes processor circuitry 120 
and on - chip processor memory circuitry 130 ( e . g . , SRAM 
memory such as cache memory circuitry or LLC memory 
circuitry ) configurable to provide pipelined SRAM archi 
tecture ( bit - serial PISA ) circuitry 140 capable of performing 
bit - serial mathematical operations to provide a recurrent 
neural network 150 , in accordance with at least one embodi 
ment described herein . The processor - based device 300 may 
additionally include one or more of the following : a graphi 
cal processing unit 312 , a wireless input / output ( 1 / 0 ) inter 
face 320 , a wired I / O interface 330 , system memory 170 , 
power management circuitry 350 , a non - transitory storage 
device 360 , and a network interface 370 . The following 
discussion provides a brief , general description of the com 
ponents forming the illustrative processor - based device 300 . 
Example , non - limiting processor - based devices 300 may 
include , but are not limited to : smartphones , wearable com 
puters , portable computing devices , handheld computing 
devices , desktop computing devices , servers , blade server 
devices , workstations , and similar . 
[ 0062 ] In some embodiments , the processor - based device 
300 includes graphics processor circuitry 312 capable of 
executing machine - readable instruction sets and generating 
an output signal capable of providing a display output to a 
system user . Those skilled in the relevant art will appreciate 
that the illustrated embodiments as well as other embodi 
ments may be practiced with other processor - based device 
configurations , including portable electronic or handheld 
electronic devices , for instance smartphones , portable com 



US 2019 / 0056885 A1 Feb . 21 , 2019 

puters , wearable computers , consumer electronics , personal 
computers ( “ PCs ” ) , network PCs , minicomputers , server 
blades , mainframe computers , and the like . The processor 
circuitry 120 may include any number of hardwired or 
configurable circuits , some or all of which may include 
programmable and / or configurable combinations of elec 
tronic components , semiconductor devices , and / or logic 
elements that are disposed partially or wholly in a PC , 
server , or other computing system capable of executing 
machine - readable instructions . 
[ 0063 ] The processor - based device 300 includes a bus or 
similar communications link 316 that communicably 
couples and facilitates the exchange of information and / or 
data between various system components including the 
processor circuitry 120 , the graphics processor circuitry 312 , 
one or more wireless I / O interfaces 320 , one or more wired 
I / O interfaces 330 , the system memory 170 , one or more 
storage devices 360 , and / or one or more network interfaces 
370 . The processor - based device 300 may be referred to in 
the singular herein , but this is not intended to limit the 
embodiments to a single processor - based device 300 , since 
in certain embodiments , there may be more than one pro 
cessor - based device 300 that incorporates , includes , or con 
tains any number of communicably coupled , collocated , or 
remote networked circuits or devices . 
[ 0064 ] The processor circuitry 120 may include any num 
ber , type , or combination of currently available or future 
developed devices capable of executing machine - readable 
instruction sets . The processor circuitry 120 may include but 
is not limited to any current or future developed single - or 
multi - core processor or microprocessor , such as : on or more 
systems on a chip ( SOCs ) ; central processing units ( CPUs ) ; 
digital signal processors ( DSPs ) ; graphics processing units 
( GPUs ) ; application - specific integrated circuits ( ASICs ) , 
programmable logic units , field programmable gate arrays 
( FPGAs ) , and the like . Unless described otherwise , the 
construction and operation of the various blocks shown in 
FIG . 3 are of conventional design . Consequently , such 
blocks need not be described in further detail herein , as they 
will be understood by those skilled in the relevant art . The 
bus 316 that interconnects at least some of the components 
of the processor - based device 300 may employ any currently 
available or future developed serial or parallel bus structures 
or architectures . 
[ 0065 ] In embodiments , the processor circuitry 120 and 
the on - chip processor memory circuitry 130 are disposed in 
a semiconductor package 110 . The semiconductor package 
110 may additionally include the neural network control 
circuitry 210 and / or the DMA control circuitry 220 . In some 
implementations , the processor circuitry 120 may provide 
all or a portion of either or both the neural network control 
circuitry 210 and / or the DMA control circuitry 220 . The 
on - chip processor memory circuitry 130 includes the bit 
serial PISA circuitry 140 that forms the recurrent neural 
network 150 . 
[ 0066 ] The system memory 170 may include read - only 
memory ( “ ROM " ) 342 and random access memory 
( “ RAM ” ) 346 . A portion of the ROM 342 may be used to 
store or otherwise retain a basic input / output system 
( “ BIOS ” ) 344 . The BIOS 344 provides basic functionality to 
the processor - based device 300 , for example by causing the 
processor circuitry 120 to load and / or execute one or more 
machine - readable instruction sets 314 . In embodiments , at 
least some of the one or more machine - readable instruction 

sets cause at least a portion of the processor circuitry 120 to 
provide , create , produce , transition , and / or function as a 
dedicated , specific , and particular machine , for example a 
word processing machine , a digital image acquisition 
machine , a media playing machine , a gaming system , a 
communications device , a smartphone , or similar . 
[ 0067 ] The processor - based device 300 may include at 
least one wireless input / output ( 1 / 0 ) interface 320 . The at 
least one wireless I / O interface 320 may be communicably 
coupled to one or more physical output devices 322 ( tactile 
devices , video displays , audio output devices , hardcopy 
output devices , etc . ) . The at least one wireless I / O interface 
320 may communicably couple to one or more physical 
input devices 324 ( pointing devices , touchscreens , key 
boards , tactile devices , etc . ) . The at least one wireless I / O 
interface 320 may include any currently available or future 
developed wireless I / O interface . Example wireless I / O 
interfaces include , but are not limited to : BLUETOOTH® , 
near field communication ( NFC ) , and similar . 
f0068 ] . The processor - based device 300 may include one 
or more wired input / output ( I / O ) interfaces 330 . The at least 
one wired I / O interface 330 may be communicably coupled 
to one or more physical output devices 322 ( tactile devices , 
video displays , audio output devices , hardcopy output 
devices , etc . ) . The at least one wired I / O interface 330 may 
be communicably coupled to one or more physical input 
devices 224 ( pointing devices , touchscreens , keyboards , 
tactile devices , etc . ) . The wired I / O interface 330 may 
include any currently available or future developed I / O 
interface . Example wired I / O interfaces include but are not 
limited to : universal serial bus ( USB ) , IEEE 1394 
( “ FireWire ” ) , and similar . 
[ 0069 ] The processor - based device 300 may include one 
or more communicably coupled , non - transitory , data storage 
devices 360 . The data storage devices 360 may include one 
or more hard disk drives ( HDDs ) and / or one or more 
solid - state storage devices ( SSDs ) . The one or more data 
storage devices 360 may include any current or future 
developed storage appliances , network storage devices , and / 
or systems . Non - limiting examples of such data storage 
devices 360 may include , but are not limited to , any current 
or future developed non - transitory storage appliances or 
devices , such as one or more magnetic storage devices , one 
or more optical storage devices , one or more electro - resis 
tive storage devices , one or more molecular storage devices , 
one or more quantum storage devices , or various combina 
tions thereof . In some implementations , the one or more data 
storage devices 360 may include one or more removable 
storage devices , such as one or more flash drives , flash 
memories , flash storage units , or similar appliances or 
devices capable of communicable coupling to and decou 
pling from the processor - based device 200 . 
[ 0070 ] The one or more data storage devices 360 may 
include interfaces or controllers ( not shown ) communica 
tively coupling the respective storage device or system to the 
bus 316 . The one or more data storage devices 360 may 
store , retain , or otherwise contain machine - readable instruc 
tion sets , data structures , program modules , data stores , 
databases , logical structures , and / or other data useful to the 
processor circuitry 120 and / or graphics processor circuitry 
312 and / or one or more applications executed on or by the 
processor circuitry 120 and / or graphics processor circuitry 
312 . In some instances , one or more data storage devices 360 
may be communicably coupled to the processor circuitry 
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120 , for example via the bus 316 or via one or more wired 
communications interfaces 330 ( e . g . , Universal Serial Bus 
or USB ) ; one or more wireless communications interfaces 
320 ( e . g . , Bluetooth® , Near Field Communication or NFC ) ; 
and / or one or more network interfaces 370 ( IEEE 802 . 3 or 
Ethernet , IEEE 802 . 11 , or WiFi® , etc . ) . 
[ 0071 ] The processor - based device 300 may include 
power management circuitry 350 that controls one or more 
operational aspects of the energy storage device 352 . In 
embodiments , the energy storage device 352 may include 
one or more primary ( i . e . , non - rechargeable ) or secondary 
( i . e . , rechargeable ) batteries or similar energy storage 
devices . In embodiments , the energy storage device 352 may 
include one or more supercapacitors or ultracapacitors . In 
embodiments , the power management circuitry 350 may 
alter , adjust , or control the flow of energy from an external 
power source 354 to the energy storage device 352 and / or to 
the processor - based device 300 . The power source 354 may 
include , but is not limited to , a solar power system , a 
commercial electric grid , a portable generator , an external 
energy storage device , or any combination thereof . 
[ 0072 ] For convenience , the processor circuitry 120 , the 
storage device 360 , the system memory 170 , the graphics 
processor circuitry 312 , the wireless I / O interface 320 , the 
wired I / O interface 330 , the power management circuitry 
350 , and the network interface 370 are illustrated as com 
municatively coupled to each other via the bus 316 , thereby 
providing connectivity between the above - described com 
ponents . In alternative embodiments , the above - described 
components may be communicatively coupled in a different 
manner than illustrated in FIG . 3 . For example , one or more 
of the above - described components may be directly coupled 
to other components , or may be coupled to each other , via 
one or more intermediary components ( not shown ) . In 
another example , one or more of the above - described com 
ponents may be integrated into the semiconductor package 
110 and / or the graphics processor circuitry 312 . In some 
embodiments , all or a portion of the bus 316 may be omitted 
and the components are coupled directly to each other using 
suitable wired or wireless connections . 
[ 0073 ] FIG . 4 is a high - level flow diagram of an illustra 
tive method 400 of implementing a recurrent neural network 
150 using pipelined SRAM architecture ( bit - serial PISA ) 
circuitry 140 implemented in on - chip processor memory 
circuitry 130 , in accordance with at least one embodiment 
described herein . Executing the neural network 150 using 
bit - serial mathematical in on - chip processor memory cir 
cuitry 130 leverages the available on - chip SRAM memory , 
greatly expanding the vector / tensor processing capability of 
the system . Implementing the neural network 150 as bit 
serial PISA circuitry 140 using on - chip processor memory 
circuitry 130 and coupling the bit - serial PISA circuitry to 
PISA memory circuitry 160 using a relatively high band 
width connection 162 advantageously reduces the delays 
caused by the repeated transfers of weight data , layer input 
data , and layer output between the processor circuitry and 
system memory in a conventional processor - based neural 
network . The method 400 commences at 402 . 
[ 0074 ] At 404 , the system 100 receives data representative 
of a neural network model and neural network input data for 
the neural network model . In embodiments , the neural 
network model includes data representative of a recurrent 
neural network 150 . A system user may provide the data 
representative of a neural network model and neural network 

input data in the form of a high - level language instruction 
set . The processor circuitry 120 converts the neural network 
model and neural network input data from the high - level 
language instruction set to an instruction set architecture 
( ISA ) implementable by at least one of : the neural network 
control circuitry 210 and / or the microcontroller circuitry 250 
disposed in each SRAM array 240 . In embodiments , the 
processor circuitry 120 may store all or a portion of the ISA 
neural network model and / or neural network input data in 
the system memory circuitry 170 . 
[ 0075 ] At 406 , at least one of the processor circuitry 120 
and / or the neural network control circuitry 210 allocates 
SRAM arrays 240 included in the bit - serial PISA circuitry 
140 to implement the neural network 150 . The SRAM arrays 
240 are disposed in the on - chip processor memory circuitry 
130 . In embodiments , the SRAM arrays 240 are disposed in 
processor cache memory circuitry , such as SRAM memory 
array circuitry included in the processor last level cache 
( LLC ) circuitry 130 . 
[ 0076 ] At 408 , at least one of the processor circuitry 120 
and / or the neural network control circuitry 210 causes a 
transfer of each layer of the neural network model 150 , - 150n 
in the ISA to the microcontroller circuitry 250 , - 250 , in a 
respective one of the plurality of SRAM arrays 240 , - 240n 
( where “ n ” represents the total number of layers included in 
the neural network 150 ) . The microcontroller circuitry 250 
configures the memory elements included in the array to 
perform mathematical operations ( add , multiply , reduction , 
etc . ) using the received neural network model ISA for the 
neural network layer implemented by the respective SRAM 
array 240 . In embodiments , the microcontroller circuitry 250 
also configures input buffer circuitry and / or output buffer 
circuitry within the SRAM array 240 . 
[ 0077 ] In embodiments , at least one of the processor 
circuitry 120 and / or the neural network control circuitry 210 
causes the DMA control circuitry 220 to initiate a DMA 
transfer of each layer of the neural network model 150 , - 150n 
from the system memory circuitry 170 to the PISA memory 
circuitry 160 . The PISA memory circuitry 160 then transfers 
each layer of the neural network model 150 , - 150 , to the 
microcontroller circuitry 250 in respective ones of the 
SRAM arrays 240 . In other embodiments , the processor 
circuitry 120 causes the DMA control circuitry 220 to 
initiate a DMA transfer of each layer of the neural network 
model 150 , - 150 , from the system memory circuitry 170 
directly to the microcontroller circuitry 250 in respective 
ones of the SRAM arrays 240 . 
[ 0078 ] At 410 , at least one of the processor circuitry 120 
and / or the neural network control circuitry 210 causes the 
DMA control circuitry 220 to initiate a DMA transfer of 
layer weights from system memory circuitry 170 to the 
PISA memory circuitry 160 . Transferring the layer weights 
from system memory circuitry 170 to the PISA memory 
circuitry 160 beneficially allows the neural network 150 to 
update and load layer weights via the relatively high band 
width connection 162 , whereas if the layer weights were 
maintained in the system memory circuitry 170 such updates 
and loads would be temporally limited by the relatively low 
bandwidth connections 172 , 174 between the bit - serial PISA 
circuitry 140 and the system memory circuitry 170 . At least 
one of the neural network control circuitry 210 and / or the 
microcontroller circuitry 250 in each SRAM array 240 
causes the bidirectional transfer of layer weight data 
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between the PISA memory circuitry 160 and the microcon 
troller circuitry 250 in some or all of the SRAM arrays 240 . 
[ 0079 ] At 412 , at least one of the processor circuitry 120 
and / or the neural network control circuitry 210 causes the 
transfer of the neural network input data to the input layer of 
the neural network . In embodiments , at least one of proces 
sor circuitry 120 and / or the neural network control circuitry 
210 causes the transfer of the neural network input data from 
the system memory circuitry 170 to the input layer of the 
neural network . In other embodiments , at least one of 
processor circuitry 120 and / or the neural network control 
circuitry 210 causes the transfer of the neural network input 
data from the PISA memory circuitry 160 to the input layer 
of the neural network . The SRAM arrays 240 that provide 
the input and hidden layers of the neural network 150 
include output buffers to store output data . Since the SRAM 
arrays 240 are coupled sequentially , the subsequent SRAM 
array 240 , receives layer input data from the output buffer in 
the immediately preceding SRAM array 240n - 1 : 
10080 ] At 414 , each SRAM array 240 , using the model 
loaded at 408 and the weights loaded at 410 , performs a 
bit - serial compute on the received input data and stores the 
resultant output data in one or more output buffers . The 
method 400 concludes at 416 . 
[ 0081 ] FIG . 5 is a high - level flow diagram of an illustra 
tive method 500 of transferring output data generated at the 
output layer of the neural network 150 from the bit - serial 
PISA circuitry 140 to system memory circuitry 170 , in 
accordance with at least one embodiment described herein . 
The method 500 may be used in conjunction with the 
method 400 described in detail above with regard to FIG . 4 . 
The method 500 commences at 502 . 
10082 ] At 504 , at least one of the neural network control 
circuitry 210 and / or the microcontroller circuitry 250 causes 
the transfer the neural network output data generated at the 
SRAM array 240 providing the output layer of the neural 
network to the system memory circuitry 170 . In embodi 
ments , the neural network control circuitry 210 causes the 
transfer of the output data from the bit - serial PISA circuitry 
140 to the PISA memory circuitry 160 via the high - band 
width connection 162 and the DMA control circuitry 220 
causes the transfer , via DMA , of the output data from the 
PISA memory circuitry 160 to the system memory circuitry 
170 . In other embodiments , at least one of the neural 
network control circuitry 210 and / or the microcontroller 
circuitry 250 causes the transfer the neural network output 
data from the bit - serial PISA circuitry 140 to the system 
memory circuitry 170 . The method 500 concludes at 506 . 
[ 0083 ] FIG . 6 is a high - level flow diagram of an illustra 
tive method 600 of compiling the high - level language neural 
network model and / or input data to the instruction set 
architecture ( ISA ) implemented by the bit - serial PISA cir 
cuitry 140 using high - level compiler circuitry 230A and 
low - level compiler circuitry 230B , in accordance with at 
least one embodiment described herein . The method 600 
may be used in conjunction with either or both the method 
400 described in detail above with regard to FIG . 4 and / or 
the method 500 described in detail above with regard to FIG . 
5 . The method 600 commences at 602 . 
[ 0084 ] At 604 , high - level compiler circuitry 230A com 
piles the user - supplied neural network model and / or the user 
supplied neural network input data from the high - level 
language to an intermediate domain specific language 
( DSL ) . In embodiments , the high - level compiler circuitry 

230A compiles the user - supplied neural network model 
and / or the user supplied neural network input data from the 
high - level language to an intermediate DSL such as a 
data - flow graph of layer descriptors . 
[ 0085 ] At 606 , low - level compiler circuitry 230B com 
piles the neural network model and / or the user supplied 
neural network input data from the intermediate domain 
specific language ( DSL ) to an instruction set architecture 
( ISA ) that can be implemented by the bit - serial PISA 
circuitry 140 disposed in the on - chip processor memory 
circuitry 130 . The method 600 concludes at 608 . 
100861 . While FIGS . 4 , 5 , and 6 illustrate various opera 
tions according to one or more embodiments , it is to be 
understood that not all of the operations depicted in FIGS . 
4 , 5 , and 6 are necessary for other embodiments . Indeed , it 
is fully contemplated herein that in other embodiments of 
the present disclosure , the operations depicted in FIGS . 4 , 5 , 
and 6 , and / or other operations described herein , may be 
combined in a manner not specifically shown in any of the 
drawings , but still fully consistent with the present disclo 
sure . Thus , claims directed to features and / or operations that 
are not exactly shown in one drawing are deemed within the 
scope and content of the present disclosure . 
[ 0087 ] Embodiments of the instruction ( s ) detailed above 
are embodied may be embodied in a “ generic vector friendly 
instruction format ” which is detailed below . In other 
embodiments , such a format is not utilized and another 
instruction format is used , however , the description below of 
the writemask registers , various data transformations 
( swizzle , broadcast , etc . ) , addressing , etc . is generally appli 
cable to the description of the embodiments of the instruc 
tion ( s ) above . Additionally , exemplary systems , architec 
tures , and pipelines are detailed below . Embodiments of the 
instruction ( s ) above may be executed on such systems , 
architectures , and pipelines , but are not limited to those 
detailed . 
[ 0088 ] An instruction set may include one or more instruc 
tion formats . A given instruction format may define various 
fields ( e . g . , number of bits , location of bits ) to specify , 
among other things , the operation to be performed ( e . g . , 
opcode ) and the operand ( s ) on which that operation is to be 
performed and / or other data field ( s ) ( e . g . , mask ) . Some 
instruction formats are further broken down though the 
definition of instruction templates ( or subformats ) . For 
example , the instruction templates of a given instruction 
format may be defined to have different subsets of the 
instruction format ’ s fields ( the included fields are typically 
in the same order , but at least some have different bit 
positions because there are less fields included ) and / or 
defined to have a given field interpreted differently . Thus , 
each instruction of an ISA is expressed using a given 
instruction format ( and , if defined , in a given one of the 
instruction templates of that instruction format ) and includes 
fields for specifying the operation and the operands . For 
example , an exemplary ADD instruction has a specific 
opcode and an instruction format that includes an opcode 
field to specify that opcode and operand fields to select 
operands ( source1 / destination and source2 ) ; and an occur 
rence of this ADD instruction in an instruction stream will 
have specific contents in the operand fields that select 
specific operands . A set of SIMD extensions referred to as 
the Advanced Vector Extensions ( AVX ) ( AVX1 and AVX2 ) 
and using the Vector Extensions ( VEX ) coding scheme has 
been released and / or published ( e . g . , see Intel® 64 and 
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IA - 32 Architectures Software Developer ' s Manual , Septem 
ber 2014 ; and see Intel® Advanced Vector Extensions 
Programming Reference , October 2014 ) . 

Exemplary Instruction Formats 
[ 0089 ] Embodiments of the instruction ( s ) described herein 
may be embodied in different formats . Additionally , exem 
plary systems , architectures , and pipelines are detailed 
below . Embodiments of the instruction ( s ) may be executed 
on such systems , architectures , and pipelines , but are not 
limited to those detailed . 

Generic Vector Friendly Instruction Format 
[ 0090 ] A vector friendly instruction format is an instruc 
tion format that is suited for vector instructions ( e . g . , there 
are certain fields specific to vector operations ) . While 
embodiments are described in which both vector and scalar 
operations are supported through the vector friendly instruc 
tion format , alternative embodiments use only vector opera 
tions the vector friendly instruction format . 
[ 0091 ] FIGS . 7A - 7B are block diagrams illustrating a 
generic vector friendly instruction format and instruction 
templates thereof according to embodiments of the inven 
tion . FIG . 7A is a block diagram illustrating a generic vector 
friendly instruction format and class A instruction templates 
thereof according to embodiments of the invention ; while 
FIG . 7B is a block diagram illustrating the generic vector 
friendly instruction format and class B instruction templates 
thereof according to embodiments of the invention . Specifi 
cally , a generic vector friendly instruction format 700 for 
which are defined class A and class B instruction templates , 
both of which include no memory access 705 instruction 
templates and memory access 720 instruction templates . The 
term generic in the context of the vector friendly instruction 
format refers to the instruction format not being tied to any 
specific instruction set . 
[ 0092 ] While embodiments of the invention will be 
described in which the vector friendly instruction format 
supports the following : a 64 byte vector operand length ( or 
size ) with 32 bit ( 4 byte ) or 64 bit ( 8 byte ) data element 
widths ( or sizes ) ( and thus , a 64 byte vector consists of either 
16 doubleword - size elements or alternatively , 8 quadword 
size elements ) ; a 64 byte vector operand length ( or size ) with 
16 bit ( 2 byte ) or 8 bit ( 1 byte ) data element widths ( or 
sizes ) ; a 32 byte vector operand length ( or size ) with 32 bit 
( 4 byte ) , 64 bit ( 8 byte ) , 16 bit ( 2 byte ) , or 8 bit ( 1 byte ) data 
element widths ( or sizes ) ; and a 16 byte vector operand 
length ( or size ) with 32 bit ( 4 byte ) , 64 bit ( 8 byte ) , 16 bit 
( 2 byte ) , or 8 bit ( 1 byte ) data element widths ( or sizes ) ; 
alternative embodiments may support more , less and / or 
different vector operand sizes ( e . g . , 256 byte vector oper 
ands ) with more , less , or different data element widths ( e . g . , 
128 bit ( 16 byte ) data element widths ) . 
[ 0093 ] The class A instruction templates in FIG . 7A 
include : 1 ) within the no memory access 705 instruction 
templates there is shown a no memory access , full round 
control type operation 710 instruction template and a no 
memory access , data transform type operation 715 instruc 
tion template ; and 2 ) within the memory access 720 instruc 
tion templates there is shown a memory access , temporal 
725 instruction template and a memory access , non - tempo 
ral 730 instruction template . The class B instruction tem 
plates in FIG . 7B include : 1 ) within the no memory access 

705 instruction templates there is shown a no memory 
access , write mask control , partial round control type opera 
tion 712 instruction template and a no memory access , write 
mask control , vsize type operation 717 instruction template ; 
and 2 ) within the memory access 720 instruction templates 
there is shown a memory access , write mask control 727 
instruction template . 
[ 0094 ] The generic vector friendly instruction format 700 
includes the following fields listed below in the order 
illustrated in FIGS . 7A - 7B . 
[ 0095 ] Format field 740 — a specific value ( an instruction 
format identifier value ) in this field uniquely identifies the 
vector friendly instruction format , and thus occurrences of 
instructions in the vector friendly instruction format in 
instruction streams . As such , this field is optional in the 
sense that it is not needed for an instruction set that has only 
the generic vector friendly instruction format . 
[ 0096 ] Base operation field 742 — its content distinguishes 
different base operations . 
[ 0097 ] Register index field 744 — its content , directly or 
through address generation , specifies the locations of the 
source and destination operands , be they in registers or in 
memory . These include a sufficient number of bits to select 
N registers from a PxQ ( e . g . 32x512 , 16x128 , 32x1024 , 
64x1024 ) register file . While in one embodiment N may be 
up to three sources and one destination register , alternative 
embodiments may support more or less sources and desti 
nation registers ( e . g . , may support up to two sources where 
one of these sources also acts as the destination , may support 
up to three sources where one of these sources also acts as 
the destination , may support up to two sources and one 
destination ) . 
[ 0098 ] Modifier field 746 — its content distinguishes 
occurrences of instructions in the generic vector instruction 
format that specify memory access from those that do not ; 
that is , between no memory access 705 instruction templates 
and memory access 720 instruction templates . Memory 
access operations read and / or write to the memory hierarchy 
in some cases specifying the source and / or destination 
addresses using values in registers ) , while non - memory 
access operations do not ( e . g . , the source and destinations 
are registers ) . While in one embodiment this field also 
selects between three different ways to perform memory 
address calculations , alternative embodiments may support 
more , less , or different ways to perform memory address 
calculations . 
[ 0099 ] Augmentation operation field 750 — its content dis 
tinguishes which one of a variety of different operations to 
be performed in addition to the base operation . This field is 
context specific . In one embodiment of the invention , this 
field is divided into a class field 768 , an alpha field 752 , and 
a beta field 754 . The augmentation operation field 750 
allows common groups of operations to be performed in a 
single instruction rather than 2 , 3 , or 4 instructions . 
10100 Scale field 760 — its content allows for the scaling 
of the index field ' s content for memory address generation 
( e . g . , for address generation that uses 2scale * index + base ) . 
[ 0101 ] Displacement Field 762A — its content is used as 
part of memory address generation ( e . g . , for address gen 
eration that uses 2 . scale * index + base + displacement ) . 
[ 0102 ] Displacement Factor Field 762B ( note that the 
juxtaposition of displacement field 762A directly over dis 
placement factor field 762B indicates one or the other is 
used ) — its content is used as part of address generation ; it 
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are used to indicate a specific value is present in a field ( e . g . , 
class A 768A and class B 768B for the class field 768 
respectively in FIGS . 7A - B ) . 

Instruction Templates of Class A 
[ 0107 ] In the case of the non - memory access 705 instruc 
tion templates of class A , the alpha field 752 is interpreted 
as an RS field 752A , whose content distinguishes which one 
of the different augmentation operation types are to be 
performed ( e . g . , round 752A . 1 and data transform 752A . 2 
are respectively specified for the no memory access , round 
type operation 710 and the no memory access , data trans 
form type operation 715 instruction templates ) , while the 
beta field 754 distinguishes which of the operations of the 
specified type is to be performed . In the no memory access 
705 instruction templates , the scale field 760 , the displace 
ment field 762A , and the displacement scale filed 762B are 
not present . 

specifies a displacement factor that is to be scaled by the size 
of a memory access ( N ) — where N is the number of bytes in 
the memory access ( e . g . , for address generation that uses 
2 scale * index + base + scaled displacement ) . Redundant low 
order bits are ignored and hence , the displacement factor 
field ' s content is multiplied by the memory operands total 
size ( N ) in order to generate the final displacement to be 
used in calculating an effective address . The value of N is 
determined by the processor hardware at runtime based on 
the full opcode field 774 ( described later herein ) and the data 
manipulation field 754C . The displacement field 762A and 
the displacement factor field 762B are optional in the sense 
that they are not used for the no memory access 705 
instruction templates and / or different embodiments may 
implement only one or none of the two . 

[ 0103 ] Data element width field 764 — its content distin 
guishes which one of a number of data element widths is to 
be used in some embodiments for all instructions ; in other 
embodiments for only some of the instructions ) . This field is 
optional in the sense that it is not needed if only one data 
element width is supported and / or data element widths are 
supported using some aspect of the opcodes . 
[ 0104 ] Write mask field 770 — its content controls , on a per 
data element position basis , whether that data element 
position in the destination vector operand reflects the result 
of the base operation and augmentation operation . Class A 
instruction templates support merging - writemasking , while 
class B instruction templates support both merging - and 
zeroing - writemasking . When merging , vector masks allow 
any set of elements in the destination to be protected from 
updates during the execution of any operation ( specified by 
the base operation and the augmentation operation ) ; in other 
one embodiment , preserving the old value of each element 
of the destination where the corresponding mask bit has a 0 . 
In contrast , when zeroing vector masks allow any set of 
elements in the destination to be zeroed during the execution 
of any operation ( specified by the base operation and the 
augmentation operation ) ; in one embodiment , an element of 
the destination is set to o when the corresponding mask bit 
has a 0 value . A subset of this functionality is the ability to 
control the vector length of the operation being performed 
( that is , the span of elements being modified , from the first 
to the last one ) ; however , it is not necessary that the elements 
that are modified be consecutive . Thus , the write mask field 
770 allows for partial vector operations , including loads , 
stores , arithmetic , logical , etc . While embodiments of the 
invention are described in which the write mask field ' s 770 
content selects one of a number of write mask registers that 
contains the write mask to be used ( and thus the write mask 
field ' s 770 content indirectly identifies that masking to be 
performed ) , alternative embodiments instead or additional 
allow the mask write field ' s 770 content to directly specify 
the masking to be performed . 
10105 ] Immediate field 772 — its content allows for the 
specification of an immediate . This field is optional in the 
sense that is it not present in an implementation of the 
generic vector friendly format that does not support imme 
diate and it is not present in instructions that do not use an 
immediate . 
[ 0106 ] Class field 768 — its content distinguishes between 
different classes of instructions . With reference to FIGS . 
7A - B , the contents of this field select between class A and 
class B instructions . In FIGS . 7A - B , rounded corner squares 

No - Memory Access Instruction Templates Full 
Round Control Type Operation 

[ 0108 ] . In the no memory access full round control type 
operation 710 instruction template , the beta field 754 is 
interpreted as a round control field 754A , whose content ( s ) 
provide static rounding . While in the described embodi 
ments of the invention the round control field 754A includes 
a suppress all floating point exceptions ( SAE ) field 756 and 
a round operation control field 758 , alternative embodiments 
may support may encode both these concepts into the same 
field or only have one or the other of these concepts / fields 
( e . g . , may have only the round operation control field 758 ) . 
0109 ] SAE field 756 — its content distinguishes whether 
or not to disable the exception event reporting ; when the 
SAE field ' s 756 content indicates suppression is enabled , a 
given instruction does not report any kind of floating - point 
exception flag and does not raise any floating point excep 
tion handler . 
[ 0110 ] Round operation control field 758 — its content 
distinguishes which one of a group of rounding operations to 
perform ( e . g . , Round - up , Round - down , Round - towards - zero 
and Round - to - nearest ) . Thus , the round operation control 
field 758 allows for the changing of the rounding mode on 
a per instruction basis . In one embodiment of the invention 
where a processor includes a control register for specifying 
rounding modes , the round operation control field ' s 750 
content overrides that register value . 

No Memory Access Instruction Templates Data 
Transform Type Operation 

[ 0111 ] In the no memory access data transform type opera 
tion 715 instruction template , the beta field 754 is interpreted 
as a data transform field 754B , whose content distinguishes 
which one of a number of data transforms is to be performed 
( e . g . , no data transform , swizzle , broadcast ) . 
[ 0112 ] . In the case of a memory access 720 instruction 
template of class A , the alpha field 752 is interpreted as an 
eviction hint field 752B , whose content distinguishes which 
one of the eviction hints is to be used ( in FIG . 7A , temporal 
752B . 1 and non - temporal 752B . 2 are respectively specified 
for the memory access , temporal 725 instruction template 
and the memory access , non - temporal 730 instruction tem 
plate ) , while the beta field 754 is interpreted as a data 
manipulation field 754C , whose content distinguishes which 
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one of a number of data manipulation operations ( also 
known as primitives ) is to be performed ( e . g . , no manipu 
lation ; broadcast ; up conversion of a source ; and down 
conversion of a destination ) . The memory access 720 
instruction templates include the scale field 760 , and option 
ally the displacement field 762A or the displacement scale 
field 762B . 
10113 ] Vector memory instructions perform vector loads 
from and vector stores to memory , with conversion support . 
As with regular vector instructions , vector memory instruc 
tions transfer data from / to memory in a data element - wise 
fashion , with the elements that are actually transferred is 
dictated by the contents of the vector mask that is selected 
as the write mask . 

Memory Access Instruction Templates Temporal 
[ 0114 ] Temporal data is data likely to be reused soon 
enough to benefit from caching . This is , however , a hint , and 
different processors may implement it in different ways , 
including ignoring the hint entirely . 

Memory Access Instruction 
Templates — Non - Temporal 

[ 0115 ] Non - temporal data is data unlikely to be reused 
soon enough to benefit from caching in the 1st - level cache 
and should be given priority for eviction . This is , however , 
a hint , and different processors may implement it in different 
ways , including ignoring the hint entirely . 

Instruction Templates of Class B 
[ 0116 ] In the case of the instruction templates of class B , 
the alpha field 752 is interpreted as a write mask control ( Z ) 
field 752C , whose content distinguishes whether the write 
masking controlled by the write mask field 770 should be a 
merging or a zeroing . 
[ 0117 ] In the case of the non - memory access 705 instruc 
tion templates of class B , part of the beta field 754 is 
interpreted as an RL field 757A , whose content distinguishes 
which one of the different augmentation operation types are 
to be performed ( e . g . , round 757A . 1 and vector length 
( VSIZE ) 757A . 2 are respectively specified for the no 
memory access , write mask control , partial round control 
type operation 712 instruction template and the no memory 
access , write mask control , VSIZE type operation 717 
instruction template ) , while the rest of the beta field 754 
distinguishes which of the operations of the specified type is 
to be performed . In the no memory access 705 instruction 
templates , the scale field 760 , the displacement field 762A , 
and the displacement scale filed 762B are not present . 
[ 0118 ] In the no memory access , write mask control , 
partial round control type operation 710 instruction tem 
plate , the rest of the beta field 754 is interpreted as a round 
operation field 759A and exception event reporting is dis 
abled ( a given instruction does not report any kind of 
floating - point exception flag and does not raise any floating 
point exception handler ) . 
01191 . Round operation control field 759A — just as round 
operation control field 758 , its content distinguishes which 
one of a group of rounding operations to perform ( e . g . , 
Round - up , Round - down , Round - towards - zero and Round 
to - nearest ) . Thus , the round operation control field 759A 
allows for the changing of the rounding mode on a per 
instruction basis . In one embodiment of the invention where 

a processor includes a control register for specifying round 
ing modes , the round operation control field ' s 750 content 
overrides that register value . 
10120 ] In the no memory access , write mask control , 
VSIZE type operation 717 instruction template , the rest of 
the beta field 754 is interpreted as a vector length field 759B , 
whose content distinguishes which one of a number of data 
vector lengths is to be performed on ( e . g . , 128 , 256 , or 512 
byte ) . 
( 0121 ] In the case of a memory access 720 instruction 
template of class B , part of the beta field 754 is interpreted 
as a broadcast field 757B , whose content distinguishes 
whether or not the broadcast type data manipulation opera 
tion is to be performed , while the rest of the beta field 754 
is interpreted the vector length field 759B . The memory 
access 720 instruction templates include the scale field 760 , 
and optionally the displacement field 762A or the displace 
ment scale field 762B . 
[ 0122 ] With regard to the generic vector friendly instruc 
tion format 700 , a full opcode field 774 is shown including 
the format field 740 , the base operation field 742 , and the 
data element width field 764 . While one embodiment is 
shown where the full opcode field 774 includes all of these 
fields , the full opcode field 774 includes less than all of these 
fields in embodiments that do not support all of them . The 
full opcode field 774 provides the operation code ( opcode ) . 
[ 0123 ] The augmentation operation field 750 , the data 
element width field 764 , and the write mask field 770 allow 
these features to be specified on a per instruction basis in the 
generic vector friendly instruction format . 
( 0124 ] The combination of write mask field and data 
element width field create typed instructions in that they 
allow the mask to be applied based on different data element 
widths . 
[ 0125 ] The various instruction templates found within 
class A and class B are beneficial in different situations . In 
some embodiments of the invention , different processors or 
different cores within a processor may support only class A , 
only class B , or both classes . For instance , a high perfor 
mance general purpose out - of - order core intended for gen 
eral - purpose computing may support only class B , a core 
intended primarily for graphics and / or scientific ( through 
put ) computing may support only class A , and a core 
intended for both may support both ( of course , a core that 
has some mix of templates and instructions from both 
classes but not all templates and instructions from both 
classes is within the purview of the invention ) . Also , a single 
processor may include multiple cores , all of which support 
the same class or in which different cores support different 
class . For instance , in a processor with separate graphics and 
general purpose cores , one of the graphics cores intended 
primarily for graphics and / or scientific computing may 
support only class A , while one or more of the general 
purpose cores may be high performance general purpose 
cores with out of order execution and register renaming 
intended for general - purpose computing that support only 
class B . Another processor that does not have a separate 
graphics core , may include one more general purpose in 
order or out - of - order cores that support both class A and 
class B . Of course , features from one class may also be 
implement in the other class in different embodiments of the 
invention . Programs written in a high level language would 
be put ( e . g . , just in time compiled or statically compiled ) 
into an variety of different executable forms , including : 1 ) a 
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form having only instructions of the class ( es ) supported by 
the target processor for execution ; or 2 ) a form having 
alternative routines written using different combinations of 
the instructions of all classes and having control flow code 
that selects the routines to execute based on the instructions 
supported by the processor which is currently executing the 
code . 

Exemplary Specific Vector Friendly Instruction 
Format 

[ 0126 ] FIG . 8 is a block diagram illustrating an exemplary 
specific vector friendly instruction format according to 
embodiments of the invention . FIG . 8 shows a specific 
vector friendly instruction format 800 that is specific in the 
sense that it specifies the location , size , interpretation , and 
order of the fields , as well as values for some of those fields . 
The specific vector friendly instruction format 800 may be 
used to extend the x86 instruction set , and thus some of the 
fields are similar or the same as those used in the existing 
x86 instruction set and extension thereof ( e . g . , AVX ) . This 
format remains consistent with the prefix encoding field , real 
opcode byte field , MOD R / M field , SIB field , displacement 
field , and immediate fields of the existing x86 instruction set 
with extensions . The fields from FIG . 7 into which the fields 
from FIG . 8 map are illustrated . 
[ 0127 ] It should be understood that , although embodi 
ments of the invention are described with reference to the 
specific vector friendly instruction format 800 in the context 
of the generic vector friendly instruction format 700 for 
illustrative purposes , the invention is not limited to the 
specific vector friendly instruction format 800 except where 
claimed . For example , the generic vector friendly instruction 
format 700 contemplates a variety of possible sizes for the 
various fields , while the specific vector friendly instruction 
format 800 is shown as having fields of specific sizes . By 
way of specific example , while the data element width field 
764 is illustrated as a one bit field in the specific vector 
friendly instruction format 800 , the invention is not so 
limited ( that is , the generic vector friendly instruction format 
700 contemplates other sizes of the data element width field 
764 ) . 
[ 0128 ] The generic vector friendly instruction format 700 
includes the following fields listed below in the order 
illustrated in FIG . 8A . 
[ 0129 ] EVEX Prefix ( Bytes 0 - 3 ) 802 — is encoded in a 
four - byte form . 
[ 0130 ] Format Field 740 ( EVEX Byte 0 , bits [ 7 : 0 ] ) — the 
first byte ( EVEX Byte 0 ) is the format field 740 and it 
contains Ox62 ( the unique value used for distinguishing the 
vector friendly instruction format in one embodiment of the 
invention ) . 
[ 0131 ] The second - fourth bytes ( EVEX Bytes 1 - 3 ) include 
a number of bit fields providing specific capability . 
[ 0132 ] REX field 805 ( EVEX Byte 1 , bits [ 7 - 5 ] ) — consists 
of a EVEX . R bit field ( EVEX Byte 1 , bit [ 7 ] - R ) , EVEX . X 
bit field ( EVEX byte 1 , bit [ 6 ] - X ) , and 757BEX byte 1 , 
bit?51 - B ) . The EVEX . R , EVEX . X , and EVEX . B bit fields 
provide the same functionality as the corresponding VEX bit 
fields , and are encoded using is complement form , i . e . 
ZMMO is encoded as 1111B , ZMM15 is encoded as 0000B . 
Other fields of the instructions encode the lower three bits of 
the register indexes as is known in the art ( rrr , xxx , and bbb ) , 
so that Rrrr , Xxxx , and Bbbb may be formed by adding 
EVEX . R , EVEX . X , and EVEX . B . 

[ 0133 ] REX ' field 710 — this is the first part of the REX ' 
field 710 and is the EVEX . R ' bit field ( EVEX Byte 1 , bit 
[ 4 ] - R ' ) that is used to encode either the upper 16 or lower 16 
of the extended 32 register set . In one embodiment of the 
invention , this bit , along with others as indicated below , is 
stored in bit inverted format to distinguish ( in the well 
known x86 32 - bit mode ) from the BOUND instruction , 
whose real opcode byte is 62 , but does not accept in the 
MOD R / M field ( described below ) the value of 11 in the 
MOD field ; alternative embodiments of the invention do not 
store this and the other indicated bits below in the inverted 
format . A value of 1 is used to encode the lower 16 registers . 
In other words , R ' Rrrr is formed by combining EVEX . R ' , 
EVEX . R , and the other RRR from other fields . 
[ 0134 ] Opcode map field 815 ( EVEX byte 1 , bits [ 3 : 0 ] 
mmmm ) — its content encodes an implied leading opcode 
byte ( OF , OF 38 , or OF 3 ) . 
[ 0135 ] Data element width field 764 ( EVEX byte 2 , bit 
[ 7 ] - W ) - is represented by the notation EVEX . W . EVEX . W 
is used to define the granularity ( size ) of the datatype ( either 
32 - bit data elements or 64 - bit data elements ) . 
[ 0136 ] EVEX . vvvv 820 ( EVEX Byte 2 , bits [ 6 : 3 ] - vvvv ) , 
the role of EVEX . vvv may include the following : 1 ) 
EVEX . vvvv encodes the first source register operand , speci 
fied in inverted ( 1 s complement ) form and is valid for 
instructions with 2 or more source operands ; 2 ) EVEX . VVVV 
encodes the destination register operand , specified in 1 s 
complement form for certain vector shifts ; or 3 ) EVEX . vvvv 
does not encode any operand , the field is reserved and 
should contain 1111b . Thus , EVEX . vvw field 820 encodes 
the 4 low - order bits of the first source register specifier 
stored in inverted ( 1 s complement ) form . Depending on the 
instruction , an extra different EVEX bit field is used to 
extend the specifier size to 32 registers . 
[ 0137 ) EVEX . U 768 Class field ( EVEX byte 2 , bit [ 2 ] 
U - If EVEX . U = 0 , it indicates class A or EVEX . UO ; if 
EVEX . U = 1 , it indicates class B or EVEX . U1 . 
[ 0138 ] Prefix encoding field 825 ( EVEX byte 2 , bits 
[ 1 : 0 ] - pp ) - provides additional bits for the base operation 
field . In addition to providing support for the legacy SSE 
instructions in the EVEX prefix format , this also has the 
benefit of compacting the SIMD prefix ( rather than requiring 
a byte to express the SIMD prefix , the EVEX prefix requires 
only 2 bits ) . In one embodiment , to support legacy SSE 
instructions that use a SIMD prefix ( 66H , F2H , F3H ) in both 
the legacy format and in the EVEX prefix format , these 
legacy SIMD prefixes are encoded into the SIMD prefix 
encoding field ; and at runtime are expanded into the legacy 
SIMD prefix prior to being provided to the decoder ' s PLA 
( so the PLA can execute both the legacy and EVEX format 
of these legacy instructions without modification ) . Although 
newer instructions could use the EVEX prefix encoding 
field ' s content directly as an opcode extension , certain 
embodiments expand in a similar fashion for consistency but 
allow for different meanings to be specified by these legacy 
SIMD prefixes . An alternative embodiment may redesign 
the PLA to support the 2 bit SIMD prefix encodings , and 
thus not require the expansion . 
[ 0139 ] Alpha field 752 ( EVEX byte 3 , bit [ 7 ] - EH ; also 
known as EVEX . EH , EVEX . rs , EVEX . RL , EVEX . write 
mask control , and EVEX . N ; also illustrated with a ) — as 
previously described , this field is context specific . 
[ 0140 ] Beta field 754 ( EVEX byte 3 , bits [ 6 : 4 ] - SSS , also 
known as EVEX . S2 - 0 , EVEX . r2 - 0 , EVEX . rr1 , EVEX . LLO , 
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displacement . Thus , the displacement factor field 762B is 
encoded the same way as an x86 instruction set 8 - bit 
displacement ( so no changes in the ModRM / SIB encoding 
rules ) with the only exception that disp8 is overloaded to 
disp8 * N . In other words , there are no changes in the 
encoding rules or encoding lengths but only in the interpre 
tation of the displacement value by hardware ( which needs 
to scale the displacement by the size of the memory operand 
to obtain a byte - wise address offset ) . Immediate field 772 
operates as previously described . 

Full Opcode Field 
[ 0148 ] FIG . 8B is a block diagram illustrating the fields of 
the specific vector friendly instruction format 800 that make 
up the full opcode field 774 according to one embodiment of 
the invention . Specifically , the full opcode field 774 includes 
the format field 740 , the base operation field 742 , and the 
data element width ( W ) field 764 . The base operation field 
742 includes the prefix encoding field 825 , the opcode map 
field 815 , and the real opcode field 830 . 

Register Index Field 
[ 0149 ] FIG . 8C is a block diagram illustrating the fields of 
the specific vector friendly instruction format 800 that make 
up the register index field 744 according to one embodiment 
of the invention . Specifically , the register index field 744 
includes the REX field 805 , the REX ' field 810 , the MODR 
M . reg field 844 , the MODR / M . r / m field 846 , the VVVV 
field 820 , xxx field 854 , and the bbb field 856 . 

EVEX . LLB ; also illustrated with BBB - as previously 
described , this field is context specific . 
[ 0141 ] REX ' field 710 — this is the remainder of the REX ' 
field and is the EVEX . V ' bit field ( EVEX Byte 3 , bit [ 3 ] - V ' ) 
that may be used to encode either the upper 16 or lower 16 
of the extended 32 register set . This bit is stored in bit 
inverted format . A value of 1 is used to encode the lower 16 
registers . In other words , V ' VVVV is formed by combining 
EVEX . V ' , EVEX . vvvv . 
[ 0142 ] Write mask field 770 ( EVEX byte 3 , bits [ 2 : 0 ] 
kkk ) — its content specifies the index of a register in the write 
mask registers as previously described . In one embodiment 
of the invention , the specific value EVEX kkk = 000 has a 
special behavior implying no write mask is used for the 
particular instruction ( this may be implemented in a variety 
of ways including the use of a write mask hardwired to all 
ones or hardware that bypasses the masking hardware ) . 
[ 0143 ] Real Opcode Field 830 ( Byte 4 ) is also known as 
the opcode byte . Part of the opcode is specified in this field . 
[ 0144 ] MOD R / M Field 840 ( Byte 5 ) includes MOD field 
842 , Reg field 844 , and RM field 846 . As previously 
described , the MOD field ' s 842 content distinguishes 
between memory access and non - memory access operations . 
The role of Reg field 844 can be summarized to two 
situations : encoding either the destination register operand 
or a source register operand , or be treated as an opcode 
extension and not used to encode any instruction operand . 
The role of RM field 846 may include the following : 
encoding the instruction operand that references a memory 
address , or encoding either the destination register operand 
or a source register operand . 
[ 0145 ] Scale , Index , Base ( SIB ) Byte ( Byte 6 ) - As pre 
viously described , the scale field ' s 750 content is used for 
memory address generation . SIB . xxx 854 and SIB . bbb 
856 — the contents of these fields have been previously 
referred to with regard to the register indexes Xxxx and 
Bbbb . 
[ 0146 ] Displacement field 762A ( Bytes 7 - 10 ) — when 
MOD field 842 contains 10 , bytes 7 - 10 are the displacement 
field 762A , and it works the same as the legacy 32 - bit 
displacement ( disp32 ) and works at byte granularity . 
101471 Displacement factor field 762B ( Byte 7 ) — when 
MOD field 842 contains 01 , byte 7 is the displacement factor 
field 762B . The location of this field is that same as that of 
the legacy x86 instruction set 8 - bit displacement ( disp8 ) , 
which works at byte granularity . Since disp8 is sign 
extended , it can only address between – 128 and 127 bytes 
offsets ; in terms of 64 byte cache lines , disp8 uses 8 bits that 
can be set to only four really useful values - 128 , - 64 , 0 , and 
64 ; since a greater range is often needed , disp32 is used ; 
however , disp32 requires 4 bytes . In contrast to disp8 and 
disp32 , the displacement factor field 762B is a reinterpre 
tation of disp8 ; when using displacement factor field 762B , 
the actual displacement is determined by the content of the 
displacement factor field multiplied by the size of the 
memory operand access ( N ) . This type of displacement is 
referred to as disp8 * N . This reduces the average instruction 
length ( a single byte of used for the displacement but with 
a much greater range ) . Such compressed displacement is 
based on the assumption that the effective displacement is 
multiple of the granularity of the memory access , and hence , 
the redundant low - order bits of the address offset do not 
need to be encoded . In other words , the displacement factor 
field 762B substitutes the legacy x86 instruction set 8 - bit 

Augmentation Operation Field 
[ 0150 ] FIG . 8D is a block diagram illustrating the fields of 
the specific vector friendly instruction format 800 that make 
up the augmentation operation field 750 according to one 
embodiment of the invention . When the class ( U ) field 768 
contains 0 , it signifies EVEX . UO ( class A 768A ) ; when it 
contains 1 , it signifies EVEX . U1 ( class B 768B ) . When U = 0 
and the MOD field 842 contains 11 ( signifying a no memory 
access operation ) , the alpha field 752 ( EVEX byte 3 , bit 
[ 7 ] - EH ) is interpreted as the rs field 752A . When the rs field 
752A contains a 1 ( round 752A . 1 ) , the beta field 754 ( EVEX 
byte 3 , bits 6 : 41 - SSS ) is interpreted as the round control 
field 754A . The round control field 754A includes a one bit 
SAE field 756 and a two bit round operation field 758 . When 
the rs field 752A contains a 0 ( data transform 752A . 2 ) , the 
beta field 754 ( EVEX byte 3 , bits [ 6 : 41 - SSS ) is interpreted 
as a three bit data transform field 754B . When U = 0 and the 
MOD field 842 contains 00 , 01 , or 10 ( signifying a memory 
access operation ) , the alpha field 752 ( EVEX byte 3 , bit 
[ 7 ] - EH ) is interpreted as the eviction hint ( EH ) field 752B 
and the beta field 754 ( EVEX byte 3 , bits [ 6 : 4 ] - SSS ) is 
interpreted as a three bit data manipulation field 754C . 
[ 0151 ] When U = 1 , the alpha field 752 ( EVEX byte 3 , bit 
[ 7 ] - EH ) is interpreted as the write mask control ( Z ) field 
752C . When U = 1 and the MOD field 842 contains 11 
( signifying a no memory access operation ) , part of the beta 
field 754 ( EVEX byte 3 , bit [ 4 ] - S . ) is interpreted as the RL 
field 757A ; when it contains a 1 ( round 757A . 1 ) the rest of 
the beta field 754 ( EVEX byte 3 , bit [ 6 - 5 ] - S2 - 1 ) is interpreted 
as the round operation field 759A , while when the RL field 
757A contains a 0 ( VSIZE 757 . A2 ) the rest of the beta field 
754 ( EVEX byte 3 , bit [ 6 - 51 - S , ) is interpreted as the vector 
length field 759B ( EVEX byte 3 , bit [ 6 - 5 ] - L1 - 0 ) . When U = 1 
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and the MOD field 842 contains 00 , 01 , or 10 ( signifying a 
memory access operation ) , the beta field 754 ( EVEX byte 3 , 
bits [ 6 : 41 - SSS ) is interpreted as the vector length field 759B 
( EVEX byte 3 , bit [ 6 - 5 ] - L 1 - 0 ) and the broadcast field 757B 
( EVEX byte 3 , bit [ 4 ] - B ) . 

stack is an eight - element stack used to perform scalar 
floating - point operations on 32 / 64 / 80 - bit floating point data 
using the x87 instruction set extension ; while the MMX 
registers are used to perform operations on 64 - bit packed 
integer data , as well as to hold operands for some operations 
performed between the MMX and XMM registers . 
101571 . Alternative embodiments of the invention may use 
wider or narrower registers . Additionally , alternative 
embodiments of the invention may use more , less , or dif 
ferent register files and registers . 

Exemplary Register Architecture 
[ 0152 ] FIG . 9 is a block diagram of a register architecture 
900 according to one embodiment of the invention . In the 
embodiment illustrated , there are 32 vector registers 910 that 
are 512 bits wide ; these registers are referenced as zmm ) 
through zmm31 . The lower order 256 bits of the lower 16 
zmm registers are overlaid on registers ymm0 - 16 . The lower 
order 128 bits of the lower 16 zmm registers ( the lower order 
128 bits of the ymm registers ) are overlaid on registers 
xmm0 - 15 . The specific vector friendly instruction format 
800 operates on these overlaid register file as illustrated in 
the below tables . 

Exemplary Core Architectures , Processors , and 
Computer Architectures 

Adjustable Vector 
Length Class Operations Registers 

710 , 715 , zmm registers ( the vector 
725 , 730 length is 64 byte ) 

Instruction ( FIG . 7A ; 
Templates that do U = 0 ) 
not include the 
vector length B ( FIG . 7B ; 
field 759B U = 1 ) 
Instruction B ( FIG . 7B ; 
templates that do U = 1 ) 
include the vector 
length field 
759B 

712 zmm registers ( the vector 
length is 64 byte ) 

717 , 727 zmm , ymm , or xmm 
registers ( the vector length 
is 64 byte , 32 byte , or 16 
byte ) depending on the 
vector length field 759B 

[ 0158 ] Processor cores may be implemented in different 
ways , for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 

Exemplary Core Architectures 

[ 0153 ] In other words , the vector length field 759B selects 
between a maximum length and one or more other shorter 
lengths , where each such shorter length is half the length of 
the preceding length ; and instructions templates without the 
vector length field 759B operate on the maximum vector 
length . Further , in one embodiment , the class B instruction 
templates of the specific vector friendly instruction format 
800 operate on packed or scalar single / double - precision 
floating point data and packed or scalar integer data . Scalar 
operations are operations performed on the lowest order data 
element position in an zmm / ymm / xmm register ; the higher 
order data element positions are either left the same as they 
were prior to the instruction or zeroed depending on the 
embodiment . 
[ 0154 ] Write mask registers 915 — in the embodiment 
illustrated , there are 8 write mask registers ( k0 through k7 ) , 
each 64 bits in size . In an alternate embodiment , the write 
mask registers 915 are 16 bits in size . As previously 
described , in one embodiment of the invention , the vector 
mask register ko cannot be used as a write mask ; when the 
encoding that would normally indicate k0 is used for a write 
mask , it selects a hardwired write mask of OxFFFF , effec 
tively disabling write masking for that instruction . 
[ 0155 ] General - purpose registers 925 — in the embodi 
ment illustrated , there are sixteen 64 - bit general - purpose 
registers that are used along with the existing x86 addressing 
modes to address memory operands . These registers are 
referenced by the names RAX , RBX , RCX , RDX , RBP , RSI , 
RDI , RSP , and R8 through R15 . 
( 0156 ] Scalar floating point stack register file ( x87 stack ) 
945 , on which is aliased the MMX packed integer flat 
register file 950 — in the embodiment illustrated , the x87 

[ 0159 ] FIG . 10A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . FIG . 10B is a block 
diagram illustrating both an exemplary embodiment of an 
in - order architecture core and an exemplary register renam 
ing , out - of - order issue / execution architecture core to be 
included in a processor according to embodiments of the 
invention . The solid lined boxes in FIGS . 10A - B illustrate 
the in - order pipeline and in - order core , while the optional 
addition of the dashed lined boxes illustrates the register 
renaming , out - of - order issue / execution pipeline and core . 
Given that the in - order aspect is a subset of the out - of - order 
aspect , the out - of - order aspect will be described . 
[ 0160 ] In FIG . 10A , a processor pipeline 1000 includes a 
fetch stage 1002 , a length decode stage 1004 , a decode stage 
1006 , an allocation stage 1008 , a renaming stage 1010 , a 
scheduling ( also known as a dispatch or issue ) stage 1012 , 
a register read / memory read stage 1014 , an execute stage 
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1016 , a write back / memory write stage 1018 , an exception 
handling stage 1022 , and a commit stage 1024 . 
[ 0161 ] FIG . 10B shows processor core 1090 including a 
front end unit 1030 coupled to an execution engine unit 
1050 , and both are coupled to a memory unit 1070 . The core 
1090 may be a reduced instruction set computing ( RISC ) 
core , a complex instruction set computing ( CISC ) core , a 
very long instruction word ( VLIW ) core , or a hybrid or 
alternative core type . The core 1090 may additionally 
include SRAM circuitry having a different ISA suitable of 
implementation as bit - serial PISA circuitry 140 formed in 
the on - chip processor memory circuitry 130 . As yet another 
option , the core 1090 may be a special - purpose core , such 
as , for example , a network or communication core , com 
pression engine , coprocessor core , general purpose comput 
ing graphics processing unit ( GPGPU ) core , graphics core , 
or the like . 
[ 0162 ] The front end unit 1030 includes a branch predic 
tion unit 1032 coupled to an instruction cache unit 1034 , 
which is coupled to an instruction translation lookaside 
buffer ( TLB ) 1036 , which is coupled to an instruction fetch 
unit 1038 , which is coupled to a decode unit 1040 . The 
decode unit 1040 ( or decoder ) may decode instructions , and 
generate as an output one or more micro - operations , micro 
code entry points , microinstructions , other instructions , or 
other control signals , which are decoded from , or which 
otherwise reflect , or are derived from , the original instruc 
tions . The decode unit 1040 may be implemented using 
various different mechanisms . Examples of suitable mecha 
nisms include , but are not limited to , look - up tables , hard 
ware implementations , programmable logic arrays ( PLAS ) , 
microcode read only memories ( ROMs ) , etc . In one embodi 
ment , the core 1090 includes a microcode ROM or other 
medium that stores microcode for certain macroinstructions 
( e . g . , in decode unit 1040 or otherwise within the front end 
unit 1030 ) . The decode unit 1040 is coupled to a renamel 
allocator unit 1052 in the execution engine unit 1050 . 
[ 0163 ] The execution engine unit 1050 includes the 
rename / allocator unit 1052 coupled to a retirement unit 1054 
and a set of one or more scheduler unit ( s ) 1056 . The 
scheduler unit ( s ) 1056 represents any number of different 
schedulers , including reservations stations , central instruc 
tion window , etc . The scheduler unit ( s ) 1056 is coupled to 
the physical register file ( s ) unit ( s ) 1058 . Each of the physical 
register file ( s ) units 1058 represents one or more physical 
register files , different ones of which store one or more 
different data types , such as scalar integer , scalar floating 
point , packed integer , packed floating point , vector integer , 
vector floating point , status ( e . g . , an instruction pointer that 
is the address of the next instruction to be executed ) , etc . In 
one embodiment , the physical register file ( s ) unit 1058 
comprises a vector registers unit , a write mask registers unit , 
and a scalar registers unit . These register units may provide 
architectural vector registers , vector mask registers , and 
general purpose registers . The physical register file ( s ) unit ( s ) 
1058 is overlapped by the retirement unit 1054 to illustrate 
various ways in which register renaming and out - of - order 
execution may be implemented ( e . g . , using a reorder buffer 
( s ) and a retirement register file ( s ) ; using a future file ( s ) , a 
history buffer ( s ) , and a retirement register file ( s ) ; using a 
register maps and a pool of registers ; etc . ) . The retirement 
unit 1054 and the physical register file ( s ) unit ( s ) 1058 are 
coupled to the execution cluster ( s ) 1060 . The execution 
cluster ( s ) 1060 includes a set of one or more execution units 

1062 and a set of one or more memory access units 1064 . 
The execution units 1062 may perform various operations 
( e . g . , shifts , addition , subtraction , multiplication ) and on 
various types of data ( e . g . , scalar floating point , packed 
integer , packed floating point , vector integer , vector floating 
point ) . While some embodiments may include a number of 
execution units dedicated to specific functions or sets of 
functions , other embodiments may include only one execu 
tion unit or multiple execution units that all perform all 
functions . The scheduler unit ( s ) 1056 , physical register 
file ( s ) unit ( s ) 1058 , and execution cluster ( s ) 1060 are shown 
as being possibly plural because certain embodiments create 
separate pipelines for certain types of data / operations ( e . g . , 
a scalar integer pipeline , a scalar floating point / packed 
integer / packed floating point / vector integer / vector floating 
point pipeline , and / or a memory access pipeline that each 
have their own scheduler unit , physical register file ( s ) unit , 
and / or execution cluster and in the case of a separate 
memory access pipeline , certain embodiments are imple 
mented in which only the execution cluster of this pipeline 
has the memory access unit ( s ) 1064 ) . It should also be 
understood that where separate pipelines are used , one or 
more of these pipelines may be out - of - order issue / execution 
and the rest in - order . 
10164 ] . The set of memory access units 1064 is coupled to 
the memory unit 1070 , which includes a data TLB unit 1072 
coupled to a data cache unit 1074 coupled to a level 2 ( L2 ) 
cache unit 1076 . In one exemplary embodiment , the memory 
access units 1064 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 1072 in the memory unit 1070 . The instruc 
tion cache unit 1034 is further coupled to a level 2 ( L2 ) 
cache unit 1076 in the memory unit 1070 . The L2 cache unit 
1076 is coupled to one or more other levels of cache and 
eventually to a main memory . 
[ 0165 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 1000 as follows : 1 ) the instruction 
fetch 1038 performs the fetch and length decoding stages 
1002 and 1004 ; 2 ) the decode unit 1040 performs the decode 
stage 1006 ; 3 ) the rename / allocator unit 1052 performs the 
allocation stage 1008 and renaming stage 1010 ; 4 ) the 
scheduler unit ( s ) 1056 performs the schedule stage 1012 ; 5 ) 
the physical register file ( s ) unit ( s ) 1058 and the memory unit 
1070 perform the register read / memory read stage 1014 ; the 
execution cluster 1060 perform the execute stage 1016 ; 6 ) 
the memory unit 1070 and the physical register file ( s ) unit ( s ) 
1058 perform the write back / memory write stage 1018 ; 7 ) 
various units may be involved in the exception handling 
stage 1022 ; and 8 ) the retirement unit 1054 and the physical 
register file ( s ) unit ( s ) 1058 perform the commit stage 1024 . 
10166 ] . The core 1090 may support one or more instruc 
tions sets ( e . g . , the x86 instruction set ( with some extensions 
that have been added with newer versions ) ; the MIPS 
instruction set of MIPS Technologies of Sunnyvale , Calif . ; 
the ARM instruction set ( with optional additional extensions 
such as NEON ) of ARM Holdings of Sunnyvale , Calif . ) , 
including the instruction ( s ) described herein . In one embodi 
ment , the core 1090 includes logic to support a packed data 
instruction set extension ( e . g . , AVX1 , AVX2 ) , thereby allow 
ing the operations used by many multimedia applications to 
be performed using packed data . 
[ 0167 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
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operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e . g . , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 
[ 0168 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 1034 / 1074 
and a shared L2 cache unit 1076 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 

Specific Exemplary in - Order Core Architecture 
[ 0169 ] FIGS . 11A - B illustrate a block diagram of a more 
specific exemplary in - order core architecture , which core 
would be one of several logic blocks ( including other cores 
of the same type and / or different types ) in a chip . The logic 
blocks communicate through a high - bandwidth interconnect 
network ( e . g . , a ring network ) with some fixed function 
logic , memory I / O interfaces , and other necessary I / O logic , 
depending on the application . 
[ 0170 ] FIG . 11A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network 1102 and with its local subset of the Level 2 ( L2 ) 
cache 1104 , according to embodiments of the invention . In 
one embodiment , an instruction decoder 1100 supports the 
x86 instruction set with a packed data instruction set exten 
sion . An L1 cache 1106 allows low - latency accesses to cache 
memory into the scalar and vector units . While in one 
embodiment ( to simplify the design ) , a scalar unit 1108 and 
a vector unit 1110 use separate register sets ( respectively , 
scalar registers 1112 and vector registers 1114 ) and data 
transferred between them is written to memory and then read 
back in from a level 1 ( L1 ) cache 1106 , alternative embodi 
ments of the invention may use a different approach ( e . g . , 
use a single register set or include a communication path that 
allow data to be transferred between the two register files 
without being written and read back ) . 
[ 0171 ] The local subset of the L2 cache 1104 is part of a 
global L2 cache that is divided into separate local subsets , 
one per processor core . Each processor core has a direct 
access path to its own local subset of the L2 cache 1104 . 
Data read by a processor core is stored in its L2 cache subset 
1104 and can be accessed quickly , in parallel with other 
processor cores accessing their own local L2 cache subsets . 
Data written by a processor core is stored in its own L2 
cache subset 1104 and is flushed from other subsets , if 
necessary . The ring network ensures coherency for shared 
data . The ring network is bi - directional to allow agents such 
as processor cores , L2 caches and other logic blocks to 
communicate with each other within the chip . Each ring 
data - path is 1012 - bits wide per direction . 
[ 0172 ] FIG . 11B is an expanded view of part of the 
processor core in FIG . 11A according to embodiments of the 

invention . FIG . 11B includes an L1 data cache 1106A part of 
the L1 cache 1104 , as well as more detail regarding the 
vector unit 1110 and the vector registers 1114 . Specifically , 
the vector unit 1110 is a 16 - wide vector processing unit 
( VPU ) ( see the 16 - wide ALU 1128 ) , which executes one or 
more of integer , single - precision float , and double - precision 
float instructions . The VPU supports swizzling the register 
inputs with swizzle unit 1120 , numeric conversion with 
numeric convert units 1122A - B , and replication with repli 
cation unit 1124 on the memory input . Write mask registers 
1126 allow predicating resulting vector writes . 
[ 0173 ] FIG . 12 is a block diagram of a processor 1200 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the invention . The solid lined 
boxes in FIG . 12 illustrate a processor 1200 with a single 
core 1202A , a system agent 1210 , a set of one or more bus 
controller units 1216 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 1200 
with multiple cores 1202A - N , a set of one or more integrated 
memory controller unit ( s ) 1214 in the system agent unit 
1210 , and special purpose logic 1208 . 
[ 0174 ] Thus , different implementations of the processor 
1200 may include : 1 ) a CPU with the special purpose logic 
1208 being integrated graphics and / or scientific ( through 
put ) logic ( which may include one or more cores ) , and the 
cores 1202A - N being one or more general purpose cores 
( e . g . , general purpose in - order cores , general purpose out 
of - order cores , a combination of the two ) ; 2 ) a coprocessor 
with the cores 1202A - N being a large number of special 
purpose cores intended primarily for graphics and / or scien 
tific ( throughput ) ; and 3 ) a coprocessor with the cores 
1202A - N being a large number of general purpose in - order 
cores . Thus , the processor 1200 may be a general - purpose 
processor , coprocessor or special - purpose processor , such 
as , for example , a network or communication processor , 
compression engine , graphics processor , GPGPU ( general 
purpose graphics processing unit ) , a high - throughput many 
integrated core ( MIC ) coprocessor ( including 30 or more 
cores ) , embedded processor , or the like . The processor may 
be implemented on one or more chips . The processor 1200 
may be a part of and / or may be implemented on one or more 
substrates using any of a number of process technologies , 
such as , for example , BiCMOS , CMOS , or NMOS . 
[ 0175 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 
units 1206 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 1214 . The set of 
shared cache units 1206 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . While in one embodiment a ring 
based interconnect unit 1212 interconnects the integrated 
graphics logic 1208 , the set of shared cache units 1206 , and 
the system agent unit 1210 / integrated memory controller 
unit ( s ) 1214 , alternative embodiments may use any number 
of well - known techniques for interconnecting such units . In 
one embodiment , coherency is maintained between one or 
more cache units 1206 and cores 1202 - A - N . 
f0176 ] In some embodiments , one or more of the cores 
1202A - N are capable of multi - threading . The system agent 
1210 includes those components coordinating and operating 
cores 1202A - N . The system agent unit 1210 may include for 
example a power control unit ( PCU ) and a display unit . The 
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PCU may be or include logic and components needed for 
regulating the power state of the cores 1202A - N and the 
integrated graphics logic 1208 . The display unit is for 
driving one or more externally connected displays . 
[ 0177 ] The cores 1202A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 1202A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . 

Exemplary Computer Architectures 
[ 0178 ] FIGS . 13 - 16 are block diagrams of exemplary 
computer architectures . Other system designs and configu 
rations known in the arts for laptops , desktops , handheld 
PCs , personal digital assistants , engineering workstations , 
servers , network devices , network hubs , switches , embed 
ded processors , digital signal processors ( DSPs ) , graphics 
devices , video game devices , set - top boxes , micro control 
lers , cell phones , portable media players , hand held devices , 
and various other electronic devices , are also suitable . In 
general , a huge variety of systems or electronic devices 
capable of incorporating a processor and / or other execution 
logic as disclosed herein are generally suitable . 
[ 0179 ] Referring now to FIG . 13 , shown is a block dia 
gram of a system 1300 in accordance with one embodiment 
of the present invention . The system 1300 may include one 
or more processors 1310 , 1315 , which are coupled to a 
controller hub 1320 . In one embodiment the controller hub 
1320 includes a graphics memory controller hub ( GMCH ) 
1390 and an Input / Output Hub ( IOH ) 1350 ( which may be 
on separate chips ) ; the GMCH 1390 includes memory and 
graphics controllers to which are coupled memory 1340 and 
a coprocessor 1345 ; the IOH 1350 is couples input / output 
( I / O ) devices 1360 to the GMCH 1390 . Alternatively , one or 
both of the memory and graphics controllers are integrated 
within the processor ( as described herein ) , the memory 1340 
and the coprocessor 1345 are coupled directly to the pro 
cessor 1310 , and the controller hub 1320 in a single chip 
with the IOH 1350 . 
[ 0180 ] The optional nature of additional processors 1315 
is denoted in FIG . 13 with broken lines . Each processor 
1310 , 1315 may include one or more of the processing cores 
described herein and may be some version of the processor 
1200 . 
[ 0181 ] The memory 1340 may be , for example , dynamic 
random access memory ( DRAM ) , phase change memory 
( PCM ) , or a combination of the two . For at least one 
embodiment , the controller hub 1320 communicates with 
the processor ( s ) 1310 , 1315 via a multi - drop bus , such as a 
frontside bus ( FSB ) , point - to - point interface such as Quick 
Path Interconnect ( QPI ) , or similar connection 1395 . 
[ 0182 ] In one embodiment , the coprocessor 1345 is a 
special - purpose processor , such as , for example , a high 
throughput MIC processor , a network or communication 
processor , compression engine , graphics processor , GPGPU , 
embedded processor , or the like . In one embodiment , con 
troller hub 1320 may include an integrated graphics accel 
erator . 
[ 0183 ] There can be a variety of differences between the 
physical resources 1310 , 1315 in terms of a spectrum of 
metrics of merit including architectural , microarchitectural , 
thermal , power consumption characteristics , and the like . 

[ 0184 ] In one embodiment , the processor 1310 executes 
instructions that control data processing operations of a 
general type . Embedded within the instructions may be 
coprocessor instructions . The processor 1310 recognizes 
these coprocessor instructions as being of a type that should 
be executed by the attached coprocessor 1345 . Accordingly , 
the processor 1310 issues these coprocessor instructions ( or 
control signals representing coprocessor instructions ) on a 
coprocessor bus or other interconnect , to coprocessor 1345 . 
Coprocessor ( s ) 1345 accept and execute the received copro 
cessor instructions . 
[ 0185 ] Referring now to FIG . 14 , shown is a block dia 
gram of a first more specific exemplary system 1400 in 
accordance with an embodiment of the present invention . As 
shown in FIG . 14 , multiprocessor system 1400 is a point 
to - point interconnect system , and includes a first processor 
1470 and a second processor 1480 coupled via a point - to 
point interconnect 1450 . Each of processors 1470 and 1480 
may be some version of the processor 1200 . In one embodi 
ment of the invention , processors 1470 and 1480 are respec 
tively processors 1310 and 1315 , while coprocessor 1438 is 
coprocessor 1345 . In another embodiment , processors 1470 
and 1480 are respectively processor 1310 coprocessor 1345 . 
[ 0186 ] Processors 1470 and 1480 are shown including 
integrated memory controller ( IMC ) units 1472 and 1482 , 
respectively . Processor 1470 also includes as part of its bus 
controller units point - to - point ( PPP ) interfaces 1476 and 
1478 ; similarly , second processor 1480 includes P - P inter 
faces 1486 and 1488 . Processors 1470 , 1480 may exchange 
information via a point - to - point ( P - P ) interface 1450 using 
P - P interface circuits 1478 , 1488 . As shown in FIG . 14 , 
IMCs 1472 and 1482 couple the processors to respective 
memories , namely a memory 1432 and a memory 1434 , 
which may be portions of main memory locally attached to 
the respective processors . 
0187 ] Processors 1470 , 1480 may each exchange infor 

mation with a chipset 1490 via individual P - P interfaces 
1452 , 1454 using point to point interface circuits 1476 , 
1494 , 1486 , 1498 . Chipset 1490 may optionally exchange 
information with the coprocessor 1438 via a high - perfor 
mance interface 1439 . In one embodiment , the coprocessor 
1438 is a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , or the like . 
[ 0188 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0189 ] Chipset 1490 may be coupled to a first bus 1416 via 
an interface 1496 . In one embodiment , first bus 1416 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present invention 
is not so limited . 
[ 0190 ] As shown in FIG . 14 , various I / O devices 1414 
may be coupled to first bus 1416 , along with a bus bridge 
1418 which couples first bus 1416 to a second bus 1420 . In 
one embodiment , one or more additional processor ( s ) 1415 , 
such as coprocessors , high - throughput MIC processors , 
GPGPU ' s , accelerators ( such as , e . g . , graphics accelerators 
or digital signal processing ( DSP ) units ) , field program 
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mable gate arrays , or any other processor , are coupled to first 
bus 1416 . In one embodiment , second bus 1420 may be a 
low pin count ( LPC ) bus . Various devices may be coupled to 
a second bus 1420 including , for example , a keyboard and / or 
mouse 1422 , communication devices 1427 and a storage 
unit 1428 such as a disk drive or other mass storage device 
which may include instructions / code and data 1430 , in one 
embodiment . Further , an audio I / O 1424 may be coupled to 
the second bus 1420 . Note that other architectures are 
possible . For example , instead of the point - to - point archi 
tecture of FIG . 14 , a system may implement a multi - drop bus 
or other such architecture . 
[ 0191 ] Referring now to FIG . 15 , shown is a block dia 
gram of a second more specific exemplary system 1500 in 
accordance with an embodiment of the present invention . 
Like elements in FIGS . 14 and 15 bear like reference 
numerals , and certain aspects of FIG . 14 have been omitted 
from FIG . 15 in order to avoid obscuring other aspects of 
FIG . 15 . 
[ 0192 ] FIG . 15 illustrates that the processors 1470 , 1480 
may include integrated memory and I / O control logic 
( " CL " ) 1472 and 1482 , respectively . Thus , the CL 1472 , 
1482 include integrated memory controller units and include 
I / O control logic . FIG . 15 illustrates that not only are the 
memories 1432 , 1434 coupled to the CL 1472 , 1482 , but also 
that I / O devices 1514 are also coupled to the control logic 
1472 , 1482 . Legacy I / O devices 1515 are coupled to the 
chipset 1490 . 
[ 0193 ] Referring now to FIG . 16 , shown is a block dia 
gram of a SoC 1600 in accordance with an embodiment of 
the present invention . Similar elements in FIG . 12 bear like 
reference numerals . Also , dashed lined boxes are optional 
features on more advanced SoCs . In FIG . 16 , an interconnect 
unit ( s ) 1602 is coupled to : an application processor 1610 
which includes a set of one or more cores 202A - N and 
shared cache unit ( s ) 1206 ; a system agent unit 1210 ; a bus 
controller unit ( s ) 1216 ; an integrated memory controller 
unit ( s ) 1214 ; a set or one or more coprocessors 1620 which 
may include integrated graphics logic , an image processor , 
an audio processor , and a video processor ; an static random 
access memory ( SRAM ) unit 1630 ; a direct memory access 
( DMA ) unit 1632 ; and a display unit 1640 for coupling to 
one or more external displays . In one embodiment , the 
coprocessor ( s ) 1620 include a special - purpose processor , 
such as , for example , a network or communication proces 
sor , compression engine , GPGPU , a high - throughput MIC 
processor , embedded processor , or the like . 
[ 0194 ] Embodiments of the mechanisms disclosed herein 
may be implemented in hardware , software , firmware , or a 
combination of such implementation approaches . Embodi 
ments of the invention may be implemented as computer 
programs or program code executing on programmable 
systems comprising at least one processor , a storage system 
( including volatile and non - volatile memory and / or storage 
elements ) , at least one input device , and at least one output 
device . 
[ 0195 ] Program code , such as code 1430 illustrated in 
FIG . 14 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 

processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
0196 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
0197 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores " 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0198 ] Such machine - readable storage media may 
include , without limitation , non - transitory , tangible arrange 
ments of articles manufactured or formed by a machine or 
device , including storage media such as hard disks , any 
other type of disk including floppy disks , optical disks , 
compact disk read - only memories ( CD - ROMs ) , compact 
disk rewritable ' s ( CD - RWs ) , and magneto - optical disks , 
semiconductor devices such as read - only memories 
( ROMs ) , random access memories ( RAMs ) such as dynamic 
random access memories ( DRAMs ) , static random access 
memories ( SRAMs ) , erasable programmable read - only 
memories ( EPROMs ) , flash memories , electrically erasable 
programmable read - only memories ( EEPROMs ) , phase 
change memory ( PCM ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
101991 . Accordingly , embodiments of the invention also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 

Emulation ( Including Binary Translation , Code 
Morphing , Etc . ) 

[ 02001 . In some cases , an instruction converter may be 
used to convert an instruction from a source instruction set 
to a target instruction set . For example , the instruction 
converter may translate ( e . g . , using static binary translation , 
dynamic binary translation including dynamic compilation ) , 
morph , emulate , or otherwise convert an instruction to one 
or more other instructions to be processed by the core . The 
instruction converter may be implemented in software , hard 
ware , firmware , or a combination thereof . The instruction 
converter may be on processor , off processor , or part on and 
part off processor . 
[ 0201 ] FIG . 17 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 
In the illustrated embodiment , the instruction converter is a 
software instruction converter , although alternatively the 
instruction converter may be implemented in software , firm 
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ware , hardware , or various combinations thereof . FIG . 17 
shows a program in a high level language 1702 may be 
compiled using an x86 compiler 1704 to generate x86 binary 
code 1706 that may be natively executed by a processor with 
at least one x86 instruction set core 1716 . The processor with 
at least one x86 instruction set core 1716 represents any 
processor that can perform substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing ( 1 ) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or ( 2 ) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core , in order to achieve 
substantially the same result as an Intel processor with at 
least one x86 instruction set core . The x86 compiler 1704 
represents a compiler that is operable to generate x86 binary 
code 1706 ( e . g . , object code ) that can , with or without 
additional linkage processing , be executed on the processor 
with at least one x86 instruction set core 1716 . Similarly , 
FIG . 17 shows the program in the high level language 1702 
may be compiled using an alternative instruction set com 
piler 1708 to generate alternative instruction set binary code 
1710 that may be natively executed by a processor without 
at least one x86 instruction set core 1714 ( e . g . , a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale , Calif . and / or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale , 
Calif . ) . The instruction converter 1712 is used to convert the 
x86 binary code 1706 into code that may be natively 
executed by the processor without an x86 instruction set 
core 1714 . This converted code is not likely to be the same 
as the alternative instruction set binary code 1710 because 
an instruction converter capable of this is difficult to make ; 
however , the converted code will accomplish the general 
operation and be made up of instructions from the alterna 
tive instruction set . Thus , the instruction converter 1712 
represents software , firmware , hardware , or a combination 
thereof that , through emulation , simulation or any other 
process , allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 1706 . 
[ 0202 ] As used in this application and in the claims , a list 
of items joined by the term “ and / or ” can mean any combi 
nation of the listed items . For example , the phrase “ A , B 
and / or C ” can mean A ; B ; C ; A and B ; A and C ; B and C ; 
or A , B and C . As used in this application and in the claims , 
a list of items joined by the term “ at least one of ” can mean 
any combination of the listed terms . For example , the 
phrases " at least one of A , B or C ” can mean A ; B ; C ; A and 
B ; A and C ; B and C ; or A , B and C . 
[ 0203 ] As used in any embodiment herein , the terms 
“ system ” or “ module ” may refer to , for example , software , 
firmware and / or circuitry configured to perform any of the 
aforementioned operations . Software may be embodied as a 
software package , code , instructions , instruction sets and / or 
data recorded on non - transitory computer readable storage 
mediums . Firmware may be embodied as code , instructions 
or instruction sets and / or data that are hard - coded ( e . g . , 
nonvolatile ) in memory devices . 
[ 0204 ] As used in any embodiment herein , the term " cir 
cuitry ” may comprise , for example , singly or in any com 
bination , hardwired circuitry , programmable circuitry such 
as computer processors comprising one or more individual 
instruction processing cores , state machine circuitry , and / or 

firmware that stores instructions executed by programmable 
circuitry or future computing paradigms including , for 
example , massive parallelism , analog or quantum comput 
ing , hardware embodiments of accelerators such as neural 
net processors and non - silicon implementations of the 
above . The circuitry may , collectively or individually , be 
embodied as circuitry that forms part of a larger system , for 
example , an integrated circuit ( IC ) , system on - chip ( SOC ) , 
desktop computers , laptop computers , tablet computers , 
servers , smartphones , etc . 
[ 0205 ] Any of the operations described herein may be 
implemented in a system that includes one or more mediums 
( e . g . , non - transitory storage mediums ) having stored therein , 
individually or in combination , instructions that when 
executed by one or more processors perform the methods . 
Here , the processor may include , for example , a server CPU , 
a mobile device CPU , and / or other programmable circuitry . 
Also , it is intended that operations described herein may be 
distributed across a plurality of physical devices , such as 
processing structures at more than one different physical 
location . The storage medium may include any type of 
tangible medium , for example , any type of disk including 
hard disks , floppy disks , optical disks , compact disk read 
only memories ( CD - ROMs ) , compact disk rewritables ( CD 
RWs ) , and magneto - optical disks , semiconductor devices 
such as read - only memories ( ROMS ) , random access memo 
ries ( RAMs ) such as dynamic and static RAMs , erasable 
programmable read - only memories ( EPROMs ) , electrically 
erasable programmable read - only memories ( EEPROMs ) , 
flash memories , Solid State Disks ( SSDs ) , embedded mul 
timedia cards ( eMMCs ) , secure digital input / output ( SDIO ) 
cards , magnetic or optical cards , or any type of media 
suitable for storing electronic instructions . Other embodi 
ments may be implemented as software executed by a 
programmable control device . 
[ 0206 ] Thus , the present disclosure is directed to systems 
and methods of implementing a neural network using in 
memory , bit - serial , mathematical operations performed by a 
pipelined SRAM architecture ( bit - serial PISA ) circuitry 
disposed in on - chip processor memory circuitry . The on 
chip processor memory circuitry may include processor last 
level cache ( LLC ) circuitry . The bit - serial PISA circuitry is 
coupled to PISA memory circuitry via a relatively high 
bandwidth connection to beneficially facilitate the storage 
and retrieval of layer weights by the bit - serial PISA circuitry 
during execution . Direct memory access ( DMA ) circuitry 
transfers the neural network model and input data from 
system memory to the bit - serial PISA memory and also 
transfers output data from the PISA memory circuitry to 
system memory circuitry . Thus , the systems and methods 
described herein beneficially leverage the on - chip processor 
memory circuitry to perform a relatively large number of 
vector / tensor calculations without burdening the processor 
circuitry . 

[ 0207 ] The following examples pertain to further embodi 
ments . The following examples of the present disclosure 
may comprise subject material such as at least one device , 
a method , at least one machine - readable medium for storing 
instructions that when executed cause a machine to perform 
acts based on the method , means for performing acts based 
on the method and / or a system for implementing a neural 
network using in - memory , bit - serial , mathematical opera 

nd 
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tions performed by a pipelined SRAM architecture ( bit - 
serial PISA ) circuitry disposed in on - chip processor memory 
circuitry . 
[ 0208 ] According to example 1 , there is provided a sys 
tem . The system may include : processor circuitry ; on - chip 
processor memory circuitry that includes a plurality of static 
random access memory ( SRAM ) arrays , each of the SRAM 
arrays including microcontroller circuitry ; neural network 
control circuitry to : receive an instruction set architecture 
( ISA ) that includes data representative of a multi - layer 
neural network model and one or more neural network data 
inputs ; form serially connected bit - serial PISA circuitry 
using at least a portion of the plurality of SRAM arrays , 
wherein each of the SRAM arrays included in the portion of 
the plurality of SRAM arrays represents a single layer of the 
multi - layer neural network model ; cause a transfer of the 
ISA representative of each layer of the multi - layer neural 
network model to the microcontroller circuitry in a respec 
tive one of the portion of the plurality of SRAM arrays ; 
cause a bidirectional transfer of neural network layer 
weights between the PISA memory circuitry and the portion 
of the plurality of SRAM arrays included in the serially 
connected bit - serial PISA circuitry ; cause a transfer of the 
neural network input data from the PISA memory circuitry 
to the bit - serial PISA circuitry ; and cause a transfer of output 
data from the serially connected bit - serial PISA circuitry to 
the PISA memory circuitry . 
[ 0209 ] Example 2 may include elements of example 1 and 
the system may further include : input / output ( I / O ) interface 
circuitry to receive , in a high - level language , the data 
representative of the multi - layer neural network model and 
the one or more neural network data inputs , wherein the 
processor circuitry includes compiler circuitry to compile 
the received data representative of the multi - layer neural 
network model and the one or more neural network data 
inputs from the high - level language to the ISA . 
[ 0210 ] Example 3 may include elements of any of 
examples 1 or 2 where the compiler circuitry may further 
include : high level compiler circuitry to compile the 
received data representative of the multi - layer neural net 
work model and the one or more neural network data inputs 
from the high - level language to an intermediate domain 
specific language ( DSL ) ; and low - level compiler circuitry to 
compile the received data representative of the multi - layer 
neural network model and the one or more neural network 
data inputs from the DSL to the ISA . 
10211 ] Example 4 may include elements of any of 
examples 1 through 3 where each of the plurality of SRAM 
arrays comprises a SRAM array having integer compute 
capability ( C - SRAM ) using bit - serial , in - memory , process 

[ 0215 ] According to example 8 , there is provided an 
in - memory neural network processing method . The method 
may include : receiving , by neural network control circuitry 
coupled to processor circuitry , an instruction set architecture 
( ISA ) that includes a multi - layer neural network model and 
neural network input data ; serially coupling , by the neural 
network control circuitry , a plurality of static random access 
memory ( SRAM ) arrays included in on - chip processor 
memory circuitry to provide pipelined SRAM architecture 
( bit - serial PISA ) circuitry , each of the plurality of SRAM 
arrays representing a single layer of the multi - layer neural 
network model and including respective microcontroller 
circuitry ; causing , by the neural network control circuitry , a 
transfer of the ISA representative of each layer of the 
multi - layer neural network model to the microcontroller 
circuitry in a respective one of the plurality of SRAM arrays ; 
causing , by the neural network control circuitry , a bidirec 
tional transfer of neural network layer weights between each 
of the serially connected SRAM arrays forming the bit - serial 
PISA circuitry and PISA memory circuitry coupled to the 
bit - serial PISA circuitry via one or more high - bandwidth 
connections ; causing , by the neural network control cir 
cuitry , a transfer of the ISA representative of the neural 
network input data from the PISA memory circuitry to the 
bit - serial PISA circuitry ; and causing , by the neural network 
control circuitry , the bit - serial PISA circuitry to perform 
bit - serial , in - memory , neural network processing using the 
plurality of SRAM arrays ; and causing , by the neural 
network control circuitry , a transfer of neural network output 
data from the bit - serial PISA circuitry to the PISA memory 
circuitry . 
[ 0216 ] Example 9 may include elements of example 8 and 
the method may additionally include : causing , by the neural 
network control circuitry , a direct memory access ( DMA ) 
transfer of the neural network output data from the PISA 
memory circuitry to system memory circuitry . 
[ 0217 ] Example 10 may include elements of any of 
examples 8 or 9 , and the method may further include : 
receiving , at input / output interface circuitry coupled to the 
processor circuitry , the data representative of the multi - layer 
neural network model and the neural network input values in 
a high - level language ; and compiling , by compiler circuitry 
disposed at least partially in the processor circuitry , the 
received data representative of the multi - layer neural net 
work model and the neural network input values from the 
high - level language to the ISA . 
[ 0218 ] Example 11 may include elements of any of 
examples 8 through 10 where compiling the received data 
representative of the multi - layer neural network model and 
the neural network input values from the high - level lan 
guage to the ISA may include : compiling , by high - level 
compiler circuitry disposed at least partially in the processor 
circuitry , the received data representative of the multi - layer 
neural network model and the neural network input values 
from the high - level language to an intermediate domain 
specific language ( DSL ) ; and compiling , by low - level com 
piler circuitry disposed at least partially in the processor 
circuitry , the received data representative of the multi - layer 
neural network model and the neural network input values 
from the DSL to the ISA . 
[ 0219 ] Example 12 may include elements of any of 
examples 8 through 11 where serially coupling a plurality of 
static random access memory ( SRAM ) arrays included in 
on - chip processor memory circuitry to provide pipelined 

ing . 
[ 0212 ] Example 5 may include elements of any of 
examples 1 through 4 where the on - chip processor memory 
circuitry may include last level cache ( LLC ) memory cir 
cuitry . 
[ 0213 ] Example 6 may include elements of any of 
examples 1 through 5 where the system may include a 
multi - chip module that includes the processor circuitry , the 
on - chip processor memory circuitry , and the neural network 
control circuitry . 
[ 0214 ] Example 7 may include elements of any of 
examples 1 through 6 where the system may include a 
central processing unit that includes the processor circuitry 
and the on - chip processor memory circuitry . 
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SRAM architecture ( bit - serial PISA ) circuitry further may 
include : serially coupling , by the neural network control 
circuitry , a plurality of static random access memory 
( SRAM ) arrays included in last level cache ( LLC ) circuitry 
coupled to the processor circuitry to provide the bit - serial 
PISA circuitry . 
[ 0220 ] According to example 13 , there is provided a 
non - transitory machine - readable storage medium having 
instructions that , when executed by neural network control 
circuitry , may cause the neural network control circuitry to : 
receive , from communicably coupled processor circuitry , an 
instruction set architecture ( ISA ) that includes a multi - layer 
neural network model and neural network input data ; seri 
ally couple a plurality of static random access memory 
( SRAM ) arrays included in on - chip processor memory cir 
cuitry to provide pipelined SRAM architecture ( bit - serial 
PISA ) circuitry , each of the plurality of SRAM arrays 
representing a single layer of the multi - layer neural network 
model and including respective microcontroller circuitry ; 
cause a transfer of the ISA representative of each layer of the 
multi - layer neural network model to the microcontroller 
circuitry in a respective one of the plurality of SRAM arrays ; 
cause a bidirectional transfer of neural network layer 
weights between each of the serially connected SRAM 
arrays forming the bit - serial PISA circuitry and PISA 
memory circuitry coupled to the bit - serial PISA circuitry via 
one or more high - bandwidth connections , cause a transfer of 
the ISA representative of the neural network input data from 
the PISA memory circuitry to the bit - serial PISA circuitry ; 
cause the bit - serial PISA circuitry to perform bit - serial , 
in - memory , neural network processing using the plurality of 
SRAM arrays ; and cause a transfer of neural network output 
data from the bit - serial PISA circuitry to the PISA memory 
circuitry . 
[ 0221 ] Example 14 may include elements of example 13 
where the instructions may further cause the neural network 
control circuitry to : cause direct memory access ( DMA ) 
control circuitry to DMA transfer the neural network output 
data from the PISA memory circuitry to system memory 
circuitry . 
[ 0222 ] Example 15 may include elements of any of 
examples 13 or 14 where the instructions that cause the 
neural network control circuitry to serially couple a plurality 
of static random access memory ( SRAM ) arrays included in 
on - chip processor memory circuitry to provide pipelined 
SRAM architecture ( bit - serial PISA ) circuitry may further 
cause the neural network control circuitry to : serially couple 
a plurality of static random access memory ( SRAM ) arrays 
included in last level cache ( LLC ) circuitry coupled to the 
processor circuitry to provide the bit - serial PISA circuitry . 
[ 0223 ] According to example 16 , there is provided an 
in - memory neural network processing system . The system 
may include : means for receiving an instruction set archi - 
tecture ( ISA ) from processor circuitry , the ISA including a 
multi - layer neural network model and neural network input 
data ; means for serially coupling a plurality of static random 
access memory ( SRAM ) arrays included in on - chip proces 
sor memory circuitry to provide pipelined SRAM architec 
ture ( bit - serial PISA ) circuitry , each of the plurality of 
SRAM arrays representing a single layer of the multi - layer 
neural network model and including respective microcon - 
troller circuitry ; means for causing a transfer of the ISA 
representative of each layer of the multi - layer neural net 
work model to the microcontroller circuitry in a respective 

one of the plurality of SRAM arrays ; means for causing a 
bidirectional transfer of neural network layer weights 
between each of the serially connected SRAM arrays form 
ing the bit - serial PISA circuitry and PISA memory circuitry 
coupled to the bit - serial PISA circuitry via one or more 
high - bandwidth connections ; means for causing a transfer of 
the ISA representative of the neural network input data from 
the PISA memory circuitry to the bit - serial PISA circuitry ; 
means for causing the bit - serial PISA circuitry to perform 
bit - serial , in - memory , neural network processing using the 
plurality of SRAM arrays ; and means for causing a transfer 
of neural network output data from the bit - serial PISA 
circuitry to the PISA memory circuitry . 
[ 0224 ] Example 17 may include elements of example 16 , 
and the system may further include : means for causing a 
direct memory access ( DMA ) transfer of the neural network 
output data from the PISA memory circuitry to system 
memory circuitry . 
( 0225 ) Example 18 may include elements of any of 
examples 16 or 17 , and the system may additionally include : 
means for receiving the data representative of the multi 
layer neural network model and the neural network input 
values in a high - level language ; and means for compiling the 
received data representative of the multi - layer neural net 
work model and the neural network input values from the 
high - level language to the ISA . 
102261 . Example 19 may include elements of any of 
examples 16 through 18 where the means for compiling the 
received data representative of the multi - layer neural net 
work model and the neural network input values from the 
high - level language to the ISA may include : means for 
compiling the received data representative of the multi - layer 
neural network model and the neural network input values 
from the high - level language to an intermediate domain 
specific language ( DSL ) ; and means for compiling the 
received data representative of the multi - layer neural net 
work model and the neural network input values from the 
DSL to the ISA . 
[ 0227 ] Example 20 may include elements of any of 
examples 16 through 19 where the means for serially 
coupling a plurality of static random access memory 
( SRAM ) arrays included in on - chip processor memory cir 
cuitry to provide pipelined SRAM architecture ( bit - serial 
PISA ) circuitry further may include : means for serially 
coupling a plurality of static random access memory 
( SRAM ) arrays included in last level cache ( LLC ) circuitry 
coupled to the processor circuitry to provide the bit - serial 
PISA circuitry . 
0228 ] . According to example 21 , there is provided an 
electronic device . The electronic device may include : a 
circuit board ; processor circuitry coupled to the circuit 
board ; on - chip processor memory circuitry that includes a 
plurality of static random access memory ( SRAM ) arrays , 
each of the SRAM arrays including microcontroller cir 
cuitry ; pipelined SRAM architecture ( bit - serial PISA ) 
memory circuitry coupled to the on - chip processor memory 
circuitry via one or more high - bandwidth connections ; sys 
tem memory ; direct memory access control circuitry ; and 
neural network control circuitry to : receive an instruction set 
architecture ( ISA ) that includes data representative of a 
multi - layer neural network model and one or more neural 
network data inputs ; form serially connected bit - serial PISA 
circuitry using at least a portion of the plurality of SRAM 
arrays , wherein each of the SRAM arrays included in the 
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portion of the plurality of SRAM arrays represents a single 
layer of the multi - layer neural network model ; cause a 
transfer of the ISA representative of each layer of the 
multi - layer neural network model to the microcontroller 
circuitry in a respective one of the portion of the plurality of 
SRAM arrays ; cause a bidirectional transfer of neural net 
work layer weights between the PISA memory circuitry and 
the portion of the plurality of SRAM arrays included in the 
serially connected bit - serial PISA circuitry via the high 
bandwidth connection ; cause a transfer of the neural net 
work input data from the PISA memory circuitry to the 
bit - serial PISA circuitry ; and cause a transfer of output data 
from the serially connected bit - serial PISA circuitry to the 
PISA memory circuitry . 
[ 0229 ] Example 22 may include elements of example 21 , 
and the electronic device may include : input / output ( 1 / 0 ) 
interface circuitry to receive , in a high - level language , the 
data representative of the multi - layer neural network model 
and the one or more neural network data inputs , wherein the 
processor circuitry includes compiler circuitry to compile 
the received data representative of the multi - layer neural 
network model and the one or more neural network data 
inputs from the high - level language to the ISA . 
[ 0230 ] Example 23 may include elements of any of 
examples 21 or 22 where the compiler circuitry may include : 
high level compiler circuitry to compile the received data 
representative of the multi - layer neural network model and 
the one or more neural network data inputs from the high 
level language to an intermediate domain specific language 
( DSL ) ; and low - level compiler circuitry to compile the 
received data representative of the multi - layer neural net 
work model and the one or more neural network data inputs 
from the DSL to the ISA . 
[ 0231 ] Example 24 may include elements of any of 
examples 21 through 23 where each of the plurality of 
SRAM arrays may include a SRAM array having integer 
compute capability ( C - SRAM ) using bit - serial , in - memory , 
processing 
[ 0232 ] Example 25 may include elements of any of 
examples 21 through 24 where the on - chip processor 
memory circuitry may include last level cache ( LLC ) 
memory . 
0233 ] Example 26 may include elements of any of 
examples 21 through 25 where the system may include a 
multi - chip module that includes the processor circuitry , the 
on - chip processor memory circuitry , and the neural network 
control circuitry . 
[ 0234 ] Example 27 may include elements of any of 
examples 21 through 26 where the system may include a 
central processing unit that includes the processor circuitry 
and the on - chip processor memory circuitry . 
[ 0235 ] According to example 28 , there is provided a 
system for implementing a neural network using in - memory , 
bit - serial , mathematical operations performed by a pipelined 
SRAM architecture ( bit - serial PISA ) circuitry disposed in 
on - chip processor memory circuitry , the system being 
arranged to perform the method of any of examples 8 
through 12 . 
[ 0236 ] According to example 29 , there is provided a 
chipset arranged to perform the method of any of examples 
8 through 12 . 
[ 0237 ] According to example 30 , there is provided at least 
one non - transitory machine readable medium comprising a 
plurality of instructions that , in response to be being 

executed on a processor - based device , cause the computing 
device to carry out the method according to any of examples 
8 through 12 . 
[ 0238 ] According to example 31 , there is provided a 
device configured for implementing a neural network using 
in - memory , bit - serial , mathematical operations performed 
by a pipelined SRAM architecture ( bit - serial PISA ) circuitry 
disposed in on - chip processor memory circuitry , the device 
being arranged to perform the method of any of the 
examples 8 through 12 . 
[ 02391 . The terms and expressions which have been 
employed herein are used as terms of description and not of 
limitation , and there is no intention , in the use of such terms 
and expressions , of excluding any equivalents of the features 
shown and described ( or portions thereof ) , and it is recog 
nized that various modifications are possible within the 
scope of the claims . Accordingly , the claims are intended to 
cover all such equivalents . Various features , aspects , and 
embodiments have been described herein . The features , 
aspects , and embodiments are susceptible to combination 
with one another as well as to variation and modification , as 
will be understood by those having skill in the art . The 
present disclosure should , therefore , be considered to 
encompass such combinations , variations , and modifica 
tions . 
[ 0240 ] As described herein , various embodiments may be 
implemented using hardware elements , software elements , 
or any combination thereof . Examples of hardware elements 
may include processors , microprocessors , circuits , circuit 
elements ( e . g . , transistors , resistors , capacitors , inductors , 
and so forth ) , integrated circuits , application specific inte 
grated circuits ( ASIC ) , programmable logic devices ( PLD ) , 
digital signal processors ( DSP ) , field programmable gate 
array ( FPGA ) , logic gates , registers , semiconductor device , 
chips , microchips , chip sets , and so forth . 
10241 ] Reference throughout this specification to " one 
embodiment ” or “ an embodiment ” means that a particular 
feature , structure , or characteristic described in connection 
with the embodiment is included in at least one embodiment . 
Thus , appearances of the phrases “ in one embodiment ” or 
“ in an embodiment ” in various places throughout this speci 
fication are not necessarily all referring to the same embodi 
ment . Furthermore , the particular features , structures , or 
characteristics may be combined in any suitable manner in 
one or more embodiments . 
What is claimed : 
1 . A system comprising : 
processor circuitry ; 
on - chip processor memory circuitry that includes a plu 

rality of static random access memory ( SRAM ) arrays , 
each of the SRAM arrays including microcontroller 
circuitry ; and 

neural network control circuitry to : 
receive instructions that include data representative of 

a multi - layer neural network model and one or more 
neural network data inputs ; 

form serially coupled , bit - serial , pipelined static ran 
dom access memory architecture ( bit - serial PISA ) 
circuitry using at least a portion of the plurality of 
SRAM arrays , each of the SRAM arrays included in 
the portion of the plurality of SRAM arrays to 
determine a single layer of the multi - layer neural 
network model ; 
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cause a transfer of one or more subsets of the instruc 
tions , each of the one or more subsets representative 
of a layer of the multi - layer neural network model , to 
the microcontroller circuitry in a respective one of 
the portion of the plurality of SRAM arrays ; 

cause , via one or more high - bandwidth connections , a 
bidirectional transfer of neural network layer 
weights between the PISA memory circuitry and the 
portion of the plurality of SRAM arrays included in 
the serially connected bit - serial PISA circuitry ; 

cause a transfer of the neural network input data from 
the PISA memory circuitry to the bit - serial PISA 
circuitry ; and 

cause a transfer of output data from the serially con 
nected bit - serial PISA circuitry to the PISA memory 
circuitry . 

2 . The system of claim 1 wherein each of the plurality of 
SRAM arrays comprises a SRAM array having integer 
compute capability ( C - SRAM ) using bit - serial , in - memory , 
processing . 

3 . The system of claim 1 wherein the on - chip processor 
memory circuitry comprises last level cache ( LLC ) memory . 

4 . The system of claim 1 wherein the system comprises a 
multi - chip module that includes the processor circuitry , the 
on - chip processor memory circuitry , and the neural network 
control circuitry . 

5 . The system of claim 1 wherein the system comprises a 
central processing unit that includes the processor circuitry 
and the on - chip processor memory circuitry . 

6 . A non - transitory machine - readable storage medium 
having instructions that , when executed by neural network 
control circuitry , cause the neural network control circuitry 
to : 

receive , from communicably coupled processor circuitry , 
an instruction set architecture ( ISA ) that includes a 
multi - layer neural network model and neural network 
input data ; 

serially couple a plurality of static random access memory 
( SRAM ) arrays included in on - chip processor memory 
circuitry to provide bit - serial pipelined SRAM archi 
tecture ( bit - serial PISA ) circuitry , each of the plurality 
of SRAM arrays to determine a single layer of the 
multi - layer neural network model and including 
respective microcontroller circuitry ; 

cause a transfer of the ISA representative of each layer of 
the multi - layer neural network model to the microcon 
troller circuitry in a respective one of the plurality of 
SRAM arrays ; 

cause a bidirectional transfer of neural network layer 
weights between each of the serially connected SRAM 
arrays forming the bit - serial PISA circuitry and PISA 
memory circuitry coupled to the bit - serial PISA cir 
cuitry via one or more high - bandwidth connections ; 

cause a transfer of the ISA representative of the neural 
network input data from the PISA memory circuitry to 
the bit - serial PISA circuitry ; 

cause the bit - serial PISA circuitry to perform bit - serial , 
in - memory , neural network processing using the plu 
rality of SRAM arrays ; and 

cause a transfer of neural network output data from the 
bit - serial PISA circuitry to the PISA memory circuitry . 

7 . The non - transitory machine - readable storage medium 
of claim 11 wherein the instructions further cause the neural 
network control circuitry to : 

cause direct memory access ( DMA ) control circuitry to 
DMA transfer the neural network output data from the 
PISA memory circuitry to system memory circuitry . 

8 . The non - transitory machine - readable storage medium 
of claim 11 wherein the instructions that cause the neural 
network control circuitry to serially couple a plurality of 
static random access memory ( SRAM ) arrays included in 
on - chip processor memory circuitry to provide pipelined 
SRAM architecture ( bit - serial PISA ) circuitry further cause 
the neural network control circuitry to : 

serially couple a plurality of static random access memory 
( SRAM ) arrays included in last level cache ( LLC ) 
circuitry coupled to the processor circuitry to provide 
the bit - serial PISA circuitry . 

9 . An in - memory neural network processing system , 
comprising : 
means for receiving an instruction set architecture ( ISA ) 

from processor circuitry , the ISA including a multi 
layer neural network model and neural network input 
data ; 

means for serially coupling a plurality of static random 
access memory ( SRAM ) arrays included in on - chip 
processor memory circuitry to provide bit - serial pipe 
lined SRAM architecture ( bit - serial PISA ) circuitry , 
each of the plurality of SRAM arrays representing a 
single layer of the multi - layer neural network model 
and including respective microcontroller circuitry ; 

means for causing a transfer of the ISA representative of 
each layer of the multi - layer neural network model to 
the microcontroller circuitry in a respective one of the 
plurality of SRAM arrays ; 

means for causing a bidirectional transfer of neural net 
work layer weights between each of the serially con 
nected SRAM arrays forming the bit - serial PISA cir 
cuitry and PISA memory circuitry coupled to the bit 
serial PISA circuitry via one or more high - bandwidth 
connections ; 

means for causing a transfer of the ISA representative of 
the neural network input data from the PISA memory 
circuitry to the bit - serial PISA circuitry ; 

means for causing the bit - serial PISA circuitry to perform 
bit - serial , in - memory , neural network processing using 
the plurality of SRAM arrays ; and 

means for causing a transfer of neural network output data 
from the bit - serial PISA circuitry to the PISA memory 
circuitry . 

10 . The system of claim 9 , further comprising : 
means for causing a direct memory access ( DMA ) trans 

fer of the neural network output data from the PISA 
memory circuitry to system memory circuitry . 

11 . The system of claim 10 , further comprising : 
means for receiving the data representative of the multi 

layer neural network model and the neural network 
input values in a high - level language ; and 

means for compiling the received data representative of 
the multi - layer neural network model and the neural 
network input values from the high - level language to 
the ISA . 

12 . The system of claim 11 wherein the means for 
compiling the received data representative of the multi - layer 
neural network model and the neural network input values 
from the high - level language to the ISA comprises : 
means for compiling the received data representative of 

the multi - layer neural network model and the neural 
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network input values from the high - level language to 
an intermediate domain specific language ( DSL ) ; and 

means for compiling the received data representative of 
the multi - layer neural network model and the neural 
network input values from the DSL to the ISA . 

13 . The system of claim 9 wherein the means for serially 
coupling a plurality of static random access memory 
( SRAM ) arrays included in on - chip processor memory cir 
cuitry to provide pipelined SRAM architecture ( bit - serial 
PISA ) circuitry further comprises : 
means for serially coupling a plurality of static random 

access memory ( SRAM ) arrays included in last level 
cache ( LLC ) circuitry coupled to the processor circuitry 
to provide the bit - serial PISA circuitry . 

14 . An electronic device , comprising : 
a circuit board ; 
processor circuitry coupled to the circuit board ; 
on - chip processor memory circuitry that includes a plu 

rality of static random access memory ( SRAM ) arrays , 
each of the SRAM arrays including microcontroller 
circuitry ; 

system memory circuitry ; 
direct memory access control circuitry ; and 
neural network control circuitry to : 

receive instructions that include data representative of 
a multi - layer neural network model and one or more 
neural network data inputs ; 

form serially coupled , bit - serial , pipelined static ran 
dom access memory architecture ( bit - serial PISA ) 
circuitry using at least a portion of the plurality of 
SRAM arrays , each of the SRAM arrays included in 

the portion of the plurality of SRAM arrays to 
determine a single layer of the multi - layer neural 
network model ; 

cause a transfer of one or more subsets of the instruc 
tions , each of the one or more subsets representative 
of a layer of the multi - layer neural network model , to 
the microcontroller circuitry in a respective one of 
the portion of the plurality of SRAM arrays ; 

cause , via one or more high - bandwidth connections , a 
bidirectional transfer of neural network layer 
weights between the PISA memory circuitry and the 
portion of the plurality of SRAM arrays included in 
the serially connected bit - serial PISA circuitry ; 

cause a transfer of the neural network input data from 
the PISA memory circuitry to the bit - serial PISA 
circuitry ; and 

cause a transfer of output data from the serially con 
nected bit - serial PISA circuitry to the PISA memory 
circuitry . 

15 . The electronic device of claim 14 wherein each of the 
plurality of SRAM arrays comprises a SRAM array having 
integer compute capability ( C - SRAM ) using bit - serial , in 
memory , processing . 

16 . The electronic device of claim 14 wherein the on - chip 
processor memory circuitry comprises last level cache 
( LLC ) memory . 

17 . The electronic device of claim 14 wherein the system 
comprises a multi - chip module that includes the processor 
circuitry , the on - chip processor memory circuitry , and the 
neural network control circuitry . 

18 . The electronic device of claim 14 wherein the system 
comprises a central processing unit that includes the pro 
cessor circuitry and the on - chip processor memory circuitry . 

* * * * 


