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(57) ABSTRACT

The present disclosure is directed to systems and methods of
implementing a neural network using in-memory, bit-serial,
mathematical operations performed by a pipelined SRAM
architecture (bit-serial PISA) circuitry disposed in on-chip
processor memory circuitry. The on-chip processor memory
circuitry may include processor last level cache (LLC)
circuitry. The bit-serial PISA circuitry is coupled to PISA
memory circuitry via a relatively high-bandwidth connec-
tion to beneficially facilitate the storage and retrieval of
layer weights by the bit-serial PISA circuitry during execu-
tion. Direct memory access (DMA) circuitry transfers the
neural network model and input data from system memory
to the bit-serial PISA memory and also transfers output data
from the PISA memory circuitry to system memory cir-
cuitry. Thus, the systems and methods described herein
beneficially leverage the on-chip processor memory cir-
cuitry to perform a relatively large number of vector/tensor
calculations without burdening the processor circuitry.
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LOW SYNCH DEDICATED ACCELERATOR
WITH IN-MEMORY COMPUTATION
CAPABILITY

TECHNICAL FIELD

[0001] The present disclosure relates to processor archi-
tecture that features in-memory computation capability
within processor memory.

BACKGROUND

[0002] Recognizing that data transfer rates from storage
such as a magnetic or solid-state storage device is relatively
slow, in-memory processing relies upon the transfer of data
relevant to a decision-making process from such storage
devices to system memory having a comparatively much
higher data transfer rate. In memory processing is particu-
larly useful in applications where relatively large quantities
of intermediate decision-making data are generated. Such
intermediate decision-making data is frequently written to
storage then retrieved for subsequent processing. Neural
networks, such as recursive neural networks may generate a
large volume of intermediate data that is passed from layer
to layer within the network. In addition, each layer may rely
upon weight factors that are retrieved from data storage and,
in the case of recursive neural networks updated and written
to data storage. With an increasing dependence on graphics
intensive processing using smaller form factor portable and
mobile-platform processor-based devices, the ability to per-
form fixed or floating point mathematical operations using
in-memory processing improves speed, efficiency an accu-
racy of neural network

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Features and advantages of various embodiments
of the claimed subject matter will become apparent as the
following Detailed Description proceeds, and upon refer-
ence to the Drawings, wherein like numerals designate like
parts, and in which:

[0004] FIG. 1 is a block diagram of an illustrative system
in which a semiconductor package includes processor cir-
cuitry and on-chip processor memory that includes static
random access memory (“SRAM”) configured to form pipe-
lined SRAM architecture circuitry (“bit-serial PISA cir-
cuitry”) capable of performing bit-serial, in-memory, math-
ematical operations defined by a multi-layer neural network
model, in accordance with at least one embodiment
described herein;

[0005] FIG. 2 is a block diagram of an illustrative in-
memory neural network system where the on-chip processor
memory includes bit-serial PISA circuitry formed using a
plurality SRAM circuitry blocks (hereinafter, “SRAM
arrays”) and in which each SRAM array includes respective
microcontroller circuitry to configure and/or control the
operation of the SRAM array, in accordance with at least one
embodiment described herein;

[0006] FIG. 3 is a schematic diagram of an illustrative
electronic, processor-based, device that includes a semicon-
ductor package that includes processor circuitry and on-chip
processor memory circuitry (e.g., SRAM memory such as
cache memory circuitry or LLC memory circuitry) configu-
rable to provide the pipelined SRAM architecture (bit-serial
PISA) circuitry to perform bit-serial, in-memory mathemati-
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cal operations associated with a recurrent neural network
model, in accordance with at least one embodiment
described herein;

[0007] FIG. 4 is a high-level flow diagram of an illustra-
tive method of implementing a recurrent neural network
using pipelined SRAM architecture (bit-serial PISA) cir-
cuitry implemented in on-chip processor memory circuitry,
in accordance with at least one embodiment described
herein;

[0008] FIG. 5 is a high-level flow diagram of an illustra-
tive method of transferring output data generated at the
output layer of the multi-layer neural network from the
bit-serial PISA circuitry to system memory circuitry, in
accordance with at least one embodiment described herein;
[0009] FIG. 6 is a high-level flow diagram of an illustra-
tive method of compiling the high-level language neural
network model and/or input data to the instruction set
architecture (ISA) implemented by the bit-serial PISA cir-
cuitry using high-level compiler circuitry and low-level
compiler circuitry, in accordance with at least one embodi-
ment described herein;

[0010] FIGS. 7A-7B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments of the inven-
tion;

[0011] FIGS. 8A-D are block diagrams illustrating an
exemplary specific vector friendly instruction format
according to embodiments of the invention;

[0012] FIG. 9 is a block diagram of a register architecture
according to one embodiment of the invention;

[0013] FIG. 10A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention.

[0014] FIG. 10B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the invention;

[0015] FIGS. 11A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip;

[0016] FIG. 12 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention;

[0017] FIGS. 13, 14, 15, and 16 are block diagrams of
exemplary computer architectures; and

[0018] FIG. 17 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
[0019] Although the following Detailed Description will
proceed with reference being made to illustrative embodi-
ments, many alternatives, modifications and variations
thereof will be apparent to those skilled in the art.

DETAILED DESCRIPTION

[0020] Recurrent neural networks process information
sequentially, each layer of the neural network receives
information (as input) from the preceding layer and passes
along (as output) information to the subsequent neural
network layer. Each of the layers included in the recurrent
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neural network incorporate all of the preceding information
into the current calculation (e.g., information determined
fromt, tot, ; into the decision making at time=t,,). Recurrent
neural networks have demonstrated success in many non-
linear programming tasks. Recurrent neural networks are
flexible and find use in language modeling and generating
text, machine translation, speech recognition, and object
location and identification.

[0021] Given the relatively large tensors generated by a
recurrent neural network, the mathematical burden placed
on processors is significant—slowing the output of the
network. While delayed output may be acceptable in some
situations, in many situations, such as object detection and
avoidance in autonomous vehicles, an output delay is unac-
ceptable and potentially hazardous. While expanding pro-
cessor bandwidth by increasing clock speeds or multiplying
the number of processing cores provide a potential solution,
such solutions are costly and may increase the size and/or
power consumption of a portable electronic device.

[0022] Another solution involves the use of memory to
perform in-memory processing. For example, performing
in-situ vector arithmetic operations within static random
access memory (SRAM) arrays. The resulting architecture
provides massive parallelism by repurposing thousands, or
even more, of SRAM arrays into vector computation units.
However, while such SRAM arrays are beneficial, over
speed of the network is compromised by the sheer number
of memory operations needed to support the implementation
of the recurrent neural network.

[0023] The systems and methods described herein benefi-
cially and advantageously increase the speed and efficiency
of the in-memory processing by implementing the recurrent
neural network model in on-chip processor memory (e.g., in
the last level cache (LLC)) as a pipeline of SRAM arrays
(hereinafter a “PISA” architecture) and by preloading the
model and weights into memory locations having a high
bandwidth pathway to the on-chip processor memory. Mini-
mizing off-chip data transfer operations such as reads from
memory and stores to memory improves the responsiveness
of the recurrent neural network.

[0024] The systems and methods described herein provide
for in-memory processing of recurrent neural networks
using on-chip processor memory to: build recurrent neural
network structure; store weights associated with the multi-
layer recurrent neural network model; perform multi-layer
computations associated with the neural network; and store
intermediate output data generated by each of the neural
network layers. The systems and methods described herein
make use of pipelined static random access memory
(SRAM) blocks in the on-chip processor memory. With
bit-serial PISA, each of the pipelined SRAM arrays includes
microcontroller circuitry that, using simple logical opera-
tions (e.g., AND/NOR) performed directly on the bit lines,
causes each of the SRAM arrays to perform various math-
ematical operations (add, multiply, reduction, etc.) that
include in a layer of a multi-layer neural network, such as a
recurrent neural network.

[0025] The systems and methods described herein make
use of direct memory access (DMA) control circuitry to
transfer layer weights and/or input information that are
associated with or define a multi-layer neural network from
system memory to either: one or more storage locations
having a high bandwidth data transfer capability with the
on-chip processor memory; or directly to the on-chip pro-
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cessor memory. The DMA control circuitry also transfers
output from the output layer of the recurrent neural network
to system memory.

[0026] The systems and methods described herein typi-
cally receive the recurrent neural network model and input
in a high level language provided by the system user. The
systems and methods described herein include processor
circuitry having compiler circuitry to convert at least a
portion of the recurrent neural network model and input
from the high level language to a domain specific language
(DSL). The processor circuitry further includes additional
compiler circuitry to convert at least a portion of the
recurrent neural network model and input from the DSL to
an instruction set architecture (ISA) suitable for configuring
the bit-serial PISA disposed in the on-chip processor
memory.

[0027] A system that includes bit-serial PISA circuitry to
implement in-memory processing of a neural network using
on-chip processor memory circuitry is provided. The system
may include: processor circuitry; on-chip processor memory
circuitry that includes a plurality of SRAM arrays, each of
the SRAM arrays including microcontroller circuitry; neural
network control circuitry to: receive an instruction set archi-
tecture (ISA) that includes data representative of a multi-
layer neural network model and one or more neural network
data inputs; form serially connected bit-serial PISA circuitry
using at least a portion of the plurality of SRAM arrays,
wherein each of the SRAM arrays included in the portion of
the plurality of SRAM arrays represents a single layer of the
multi-layer neural network model; cause a transfer of the
ISA representative of each layer of the multi-layer neural
network model to the microcontroller circuitry in a respec-
tive one of the portion of the plurality of SRAM arrays;
cause a bidirectional transfer of neural network layer
weights between the PISA memory circuitry and the portion
of the plurality of SRAM arrays included in the serially
connected bit-serial PISA circuitry; cause a transfer of the
neural network input data from the PISA memory circuitry
to the bit-serial PISA circuitry; and cause a transfer of output
data from the serially connected bit-serial PISA circuitry to
the PISA memory circuitry.

[0028] An in-memory neural network processing method
is provided. The method may include: receiving, by neural
network control circuitry coupled to processor circuitry, an
instruction set architecture (ISA) that includes a multi-layer
neural network model and neural network input data; seri-
ally coupling, by the neural network control circuitry, a
plurality of SRAM arrays included in on-chip processor
memory circuitry to provide bit-serial PISA circuitry, each
of the plurality of SRAM arrays representing a single layer
of the multi-layer neural network model and including
respective microcontroller circuitry; causing, by the neural
network control circuitry, a transfer of the ISA representative
of each layer of the multi-layer neural network model to the
microcontroller circuitry in a respective one of the plurality
of SRAM arrays; causing, by the neural network control
circuitry, a bidirectional transfer of neural network layer
weights between each of the serially connected SRAM
arrays forming the bit-serial PISA circuitry and PISA
memory circuitry coupled to the bit-serial PISA circuitry via
one or more high-bandwidth connections; causing, by the
neural network control circuitry, a transfer of the ISA
representative of the neural network input data from the
PISA memory circuitry to the bit-serial PISA circuitry; and



US 2019/0056885 Al

causing, by the neural network control circuitry, the bit-
serial PISA circuitry to perform bit-serial, in-memory, neural
network processing using the plurality of SRAM arrays; and
causing, by the neural network control circuitry, a transfer of
neural network output data from the bit-serial PISA circuitry
to the PISA memory circuitry.

[0029] A non-transitory machine-readable storage
medium having instructions is provided. The instructions,
when executed by neural network control circuitry, may
cause the neural network control circuitry to: receive, from
communicably coupled processor circuitry, an instruction
set architecture (ISA) that includes a multi-layer neural
network model and neural network input data; serially
couple a plurality of static random access memory (SRAM)
arrays included in on-chip processor memory circuitry to
provide pipelined SRAM architecture (bit-serial PISA) cir-
cuitry, each of the plurality of SRAM arrays representing a
single layer of the multi-layer neural network model and
including respective microcontroller circuitry; cause a trans-
fer of the ISA representative of each layer of the multi-layer
neural network model to the microcontroller circuitry in a
respective one of the plurality of SRAM arrays; cause a
bidirectional transfer of neural network layer weights
between each of the serially connected SRAM arrays form-
ing the bit-serial PISA circuitry and PISA memory circuitry
coupled to the bit-serial PISA circuitry via one or more
high-bandwidth connections; cause a transfer of the ISA
representative of the neural network input data from the
PISA memory circuitry to the bit-serial PISA circuitry; cause
the bit-serial PISA circuitry to perform bit-serial,
in-memory, neural network processing using the plurality of
SRAM arrays; and cause a transfer of neural network output
data from the bit-serial PISA circuitry to the PISA memory
circuitry.

[0030] An in-memory neural network processing system
is provided. The system may include: means for receiving an
instruction set architecture (ISA) from processor circuitry,
the ISA including a multi-layer neural network model and
neural network input data; means for serially coupling a
plurality of static random access memory (SRAM) arrays
included in on-chip processor memory circuitry to provide
pipelined SRAM architecture (bit-serial PISA) circuitry,
each of the plurality of SRAM arrays representing a single
layer of the multi-layer neural network model and including
respective microcontroller circuitry; means for causing a
transfer of the ISA representative of each layer of the
multi-layer neural network model to the microcontroller
circuitry in a respective one of the plurality of SRAM arrays;
means for causing a bidirectional transfer of neural network
layer weights between each of the serially connected SRAM
arrays forming the bit-serial PISA circuitry and PISA
memory circuitry coupled to the bit-serial PISA circuitry via
one or more high-bandwidth connections; means for causing
a transfer of the ISA representative of the neural network
input data from the PISA memory circuitry to the bit-serial
PISA circuitry; means for causing the bit-serial PISA cir-
cuitry to perform bit-serial, in-memory, neural network
processing using the plurality of SRAM arrays; and means
for causing a transfer of neural network output data from the
bit-serial PISA circuitry to the PISA memory circuitry.
[0031] An electronic device capable of performing in-
memory neural network processing using bit-serial PISA
circuitry implemented in on-chip processor memory cir-
cuitry is provided. The electronic device may include: a
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circuit board; processor circuitry coupled to the circuit
board; on-chip processor memory circuitry that includes a
plurality of SRAM arrays, each of the SRAM arrays includ-
ing microcontroller circuitry; bit-serial PISA circuitry
coupled to the on-chip processor memory circuitry via one
or more high-bandwidth connections; system memory;
direct memory access control circuitry; and neural network
control circuitry to: receive an instruction set architecture
(ISA) that includes data representative of a multi-layer
neural network model and one or more neural network data
inputs; form serially connected bit-serial PISA circuitry
using at least a portion of the plurality of SRAM arrays,
wherein each of the SRAM arrays included in the portion of
the plurality of SRAM arrays represents a single layer of the
multi-layer neural network model; cause a transfer of the
ISA representative of each layer of the multi-layer neural
network model to the microcontroller circuitry in a respec-
tive one of the portion of the plurality of SRAM arrays;
cause a bidirectional transfer of neural network layer
weights between the PISA memory circuitry and the portion
of the plurality of SRAM arrays included in the serially
connected bit-serial PISA circuitry via the high-bandwidth
connection; cause a transfer of the neural network input data
from the PISA memory circuitry to the bit-serial PISA
circuitry; and cause a transfer of output data from the serially
connected bit-serial PISA circuitry to the PISA memory
circuitry.

[0032] As used herein, the term “on-chip” or elements,
components, systems, circuitry, or devices referred to as
“on-chip” include such items integrally fabricated with the
processor circuitry (e.g., a central processing unit, or CPU,
in which the “on-chip” components are included, integrally
formed, and/or provided by CPU circuitry) or included as
separate components formed as a portion of a multi-chip
module (MCM) or system-on-chip (SoC).

[0033] As used herein, the term “processor cache” and
“cache circuitry” refer to cache memory present within a
processor or central processing unit (CPU) package. Such
processor cache may variously be referred to, and should be
considered to include, without limitation, Level 1 (L1)
cache, Level 2 (L.2) cache, Level 3 (L3) cache, and/or last or
lowest level cache (LLC).

[0034] FIG. 1 is a block diagram of an illustrative system
100 in which a semiconductor package 110 includes pro-
cessor circuitry 120 and on-chip processor memory 130
incorporating pipelined static random access memory archi-
tecture circuitry (hereinafter, “bit-serial PISA circuitry”) 140
capable of performing bit-serial, in-memory, mathematical
operations associated with a multi-layer neural network 150,
in accordance with at least one embodiment described
herein. In embodiments, PISA memory circuitry 160 couples
to the semiconductor package 110 via a relatively high-
bandwidth connection 172. System memory circuitry 170
couples to the semiconductor package 110 and to the PISA
memory circuitry 130 via relative low bandwidth connec-
tions 172 and 174, respectively. Input/output (1/0) interface
circuitry 180 couples to the semiconductor package 110 via
one or more connections 180.

[0035] In operation, a system user provides information
and/or data representative of a multi-layer neural network
model and/or multi-layer neural network input data to the
system 100 via the I/O interface circuitry 180. Using the
supplied model and inputs, the processor circuitry 120
directly or indirectly configures the bit-serial PISA circuitry
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140 in the on-chip processor memory 130 to provide the
neural network 150. In embodiments, the model and/or the
inputs are transferred to the on-chip processor memory 130
via direct memory access (“DMA”). The processor circuitry
120 directly or indirectly initiates or causes a transfer of the
weights associated with the neural network model from the
system memory circuitry 170 to the PISA memory circuitry
160. In embodiments, some or all of the neural network layer
weights are transferred between the system memory cir-
cuitry 170 and the PISA memory circuitry 160 via DMA.
[0036] As the neural network 150 executes, the data
representative of the neural network layer weights and
intermediate input/output values are rapidly transferred
between the on-chip processor memory circuitry 130 and the
PISA memory circuitry 160 via the relatively high band-
width connection 162. In embodiments, the PISA memory
circuitry 160 is disposed in whole or in part within the
on-chip processor memory circuitry 130. In other embodi-
ments, the PISA memory circuitry 160 may be disposed
proximate the semiconductor package 110, for example
collocated with the semiconductor package 110 in a multi-
chip module or similar. The neural network 150 transfers
output to the PISA memory circuitry 160. The use of the
bit-serial PISA circuitry 140 advantageously increases the
speed of the neural network 150 since all or a portion of the
neural network layer weights and intermediate input/output
data are stored or otherwise retained in PISA memory
circuitry 160 and/or in the on-chip processor memory cir-
cuitry 130. The use of the bit-serial PISA circuitry 140 also
beneficially enhances overall system performance since data
transfers between the system memory circuitry 170 and the
PISA memory circuitry 160 are accomplished via DMA. The
above operations may be represented in system level
pseudo-code by:
[0037] 1. init_system (system initialization);
[0038] 2. init_dma (initiate data transfer from system
memory circuitry to PISA memory circuitry via DMA);
[0039] 3. load_weights (load layer weights into neural
network model);
[0040] 4. load_layer_instructions;
[0041] 5. compute_bit-serial PISA (compute neural net-
work output).
[0042] The processor circuitry 120 may include any num-
ber and/or combination of currently available and/or future
developed electronic components, semiconductor devices,
and/or logic elements capable of executing instructions. The
processor circuitry 120 may include any of a wide variety of
commercially available processors, including without limi-
tation, an AMD® Athlon®, Duron® or Opteron® processor;
an ARM® application, embedded and secure processors; an
IBM® and/or Motorola® DragonBall® or PowerPC® pro-
cessor; an IBM and/or Sony® Cell processor; or an Intel®
Celeron®, Core (2) Duo®, Core (2) Quad®, Core i3®, Core
15®, Corei7®, Atom®, Itanium®, Pentium®, Xeon® or
XScale® processor. Further, one or more of the processor
circuits 120 may comprise a multi-core processor (whether
the multiple cores coexist on the same or separate dies),
and/or a multi-processor architecture of some other variety
by which multiple physically separate processors are in
some way linked.
[0043] The processor circuitry 120 may execute one or
more instructions and/or may cause one or more other
systems, sub-systems, modules, devices, or circuits to
execute one or more instructions that cause the configuration
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of at least a portion of the on-chip processor memory
circuitry 130 to provide the bit-serial PISA circuitry 140 that
provides the hardware to implement the multi-layer neural
network 150. The processor circuitry 120 may receive, via
the /O interface circuitry 180, the user supplied neural
network model and/or the user supplied neural network
input data. Based on the network model and/or the neural
network input data, the processor circuitry 120 generates
instructions in accordance with an instruction set architec-
ture (“ISA”) that is used by the PISA circuitry 140 to
implement the neural network 150 in the on-chip processor
memory circuitry 130. The processor circuitry 120 may
execute instructions that directly or indirectly cause the
transfer of layer weights and/or instructions executable by
the bit-serial PISA circuitry 140 from the system memory
circuitry 170 to the PISA memory circuitry 160. The pro-
cessor circuitry 120 may execute instructions that directly or
indirectly cause the transfer of layer weights and/or layer
input/output data between the bit-serial PISA circuitry 140
and the PISA memory circuitry 160.

[0044] The on-chip processor memory 130 may include
any number and/or combination of currently available and/
or future developed electrical components, semiconductor
devices, and/or logic elements capable of storing or other-
wise retaining information and/or data. All or a portion of
the on-chip processor memory circuitry 130 may be formed
using static random access memory, or SRAM, circuitry. All
or a portion of the on-chip processor memory circuitry 130
may include processor cache memory, such as processor last
level cache (LL.C) memory circuitry. The on-chip processor
memory circuitry 130 stores or otherwise retains the bit-
serial PISA circuitry 140 that implements the neural network
150. In embodiments, the on-chip processor memory cir-
cuitry 130 may include LLC memory circuitry having a
storage capacity of: 8 megabytes (MB) or less; 16 MB or
less; 32 MB or less; 64 MB or less; or 128 MB or less.

[0045] In embodiments, all or a portion of the on-chip
processor memory circuitry 130 may be communicably
coupled to the processor circuitry 120. In other embodi-
ments, all or a portion of the on-chip processor memory
circuitry 130 may be shared between multiple processor
circuits 120,-120,,. In embodiments, the on-chip processor
memory circuitry 130 may store information and/or data as
a cache line, for example, as a 64-byte cache line. The
on-chip processor memory circuitry 130 may bidirectionally
communicate information and/or data to the processor cir-
cuitry 120.

[0046] The bit-serial PISA circuitry 140 includes a plu-
rality of SRAM arrays disposed within the on-chip processor
memory circuitry 130. The plurality of SRAM arrays form-
ing the bit-serial PISA circuitry are communicably coupled
in series to provide the input layer, output layer, and inter-
vening hidden layers of the neural network 150. The bit-
serial PISA circuitry 140 may include any number and or
combination of SRAM arrays, where each SRAM array
provides n-memory processing for the mathematical opera-
tions associated with a single layer in the neural network
150. For example, a five layer recurrent neural network 150
(one input layer, one output layer, three hidden layers) would
be represented in bit-serial PISA circuitry 140 as five
sequentially coupled SRAM arrays. The bit-serial PISA
circuitry 140 bidirectionally couples to and communicates
with the PISA memory circuitry 160 via the relatively high
bandwidth connection 162. In embodiments, the bit-serial
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PISA circuitry 140 may store all or a portion of the interim
data generated by one or more neural network layers (i.e.,
one or more SRAM arrays) in the PISA memory circuitry
160.

[0047] The PISA memory circuitry 160 includes any num-
ber and/or combination of currently available and/or future
developed electrical components, semiconductor devices,
and/or logic elements capable of storing or otherwise retain-
ing information and/or data. The PISA memory circuitry 160
is communicably coupled to the bit-serial PISA circuitry 140
via a bus or similar connection 162 that provides a relatively
high bandwidth coupling (i.e., a coupling that provides a
relatively high data transfer rate) between the bit-serial PISA
circuitry 140 and the PISA memory circuitry 160. The PISA
memory circuitry 160 stores or otherwise retains informa-
tion and/or data used by the neural network 150. Nonlim-
iting examples of such information and/or data include: the
neural network mode; neural network weighting factors;
neural network input data; neural network output data;
and/or neural network intermediate data. In embodiments,
the on-chip processor memory circuitry 130 provides all or
a portion of the PISA memory circuitry 160. In embodi-
ments, the PISA memory circuitry 160 may be disposed at
least in part in, on, or about the semiconductor package 110.
In embodiments, all or a portion of the PISA memory
circuitry 160 may be off-chip, disposed external to the
semiconductor package 110. In embodiments, an intercon-
nect, such as a ring interconnect, serially interconnects at
least a portion of the SRAM arrays used to provide the
bit-serial, pipelined SRAM architecture (PISA) circuitry 140
used to implement the neural network 150.

[0048] The bit-serial PISA memory 160 is communicably
coupled to the system memory circuitry 170 via a bus or
similar connection 174 that provides a relatively low band-
width pathway (i.e., a relatively low data transfer rate)
between the system memory circuitry 170 and the PISA
memory circuitry 160. Data transfer between the system
memory circuitry 170 and the PISA memory circuitry may
occur via direct memory access (DMA), bypassing the
processor circuitry 120 and freeing the processor circuitry
120 for other tasks. In embodiments, the bit-serial PISA
circuitry 140 writes the neural network output to the PISA
memory circuitry 160 and transfers the neural network
output via DMA to the system memory circuitry 170.
[0049] The system memory circuitry 170 may include any
number and/or combination of currently available and/or
future developed electronic components, semiconductor
devices, and/or logic elements capable of storing or other-
wise retaining information and/or data. The system memory
circuitry 170 is communicably coupled to the processor
circuitry 120 and/or to the semiconductor package 110 via a
bus or similar connection 172 that provides a relatively low
bandwidth pathway (i.e., a relatively low data transfer rate)
between the system memory circuitry 170 and the processor
circuitry 120 and/or to the semiconductor package 110.
[0050] The system memory circuitry 170 may be based on
any of wide variety of information storage technologies,
possibly including volatile technologies requiring the unin-
terrupted provision of electric power, and possibly including
technologies entailing the use of machine-readable storage
media that may be removable, or that may not be removable.
Thus, the system memory circuitry 170 may include any of
a wide variety of types of storage device, including without
limitation, read-only memory (ROM), random-access
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memory (RAM), dynamic RAM (DRAM), Double-Data-
Rate  DRAM (DDR-DRAM), synchronous DRAM
(SDRAM), static RAM (SRAM), programmable ROM
(PROM), erasable programmable ROM (EPROM), electri-
cally erasable programmable ROM (EEPROM), flash
memory, polymer memory (e.g., ferroelectric polymer
memory), ovonic memory, phase change or ferroelectric
memory, silicon-oxide-nitride-oxide-silicon ~ (SONOS)
memory, magnetic or optical cards, one or more individual
ferromagnetic disk drives, or a plurality of storage devices
organized into one or more arrays (e.g., multiple ferromag-
netic disk drives organized into a Redundant Array of
Independent Disks array, or RAID array). It should be noted
that although the system memory circuitry 170 is depicted as
a single block in FIG. 1, the system memory circuitry 170
may include multiple storage devices that may be based on
differing storage technologies.

[0051] The input/output interface circuitry 180 includes
any number and/or combination of currently available and/
or future developed electronic components, semiconductor
devices, and/or logic elements capable of receiving input
data from one or more input devices and/or communicating
output data to one or more output devices. In embodiments,
a system user provides neural network model and/or input
data using one or more input devices. The user may provide
the neural network model and/or input data in a high-level
language that is converted by the processor circuitry 120 to
an instruction set architecture (ISA) used to configure the
bit-serial PISA circuitry 140.

[0052] FIG. 2 is a block diagram of an illustrative in-
memory neural network system 200 in which the on-chip
processor memory 130 provides bit-serial PISA circuitry
140 that includes a plurality of SRAM arrays 240,-240,,
(collectively, “SRAM arrays 240”) each having respective
microcontroller circuitry 250,-250, (collectively, “SRAM
microcontroller circuitry 2507), in accordance with at least
one embodiment described herein. As depicted in FIG. 2, the
system 200 may include neural network control circuitry
210 and direct memory access control circuitry 220. Also as
depicted in FIG. 2, the processor circuitry 120 includes
high-level compiler circuitry 230A to compile the high-level
language, user supplied, neural network model and/or input
data to an intermediate domain specific language (DSL). The
processor circuitry 120 additionally includes low-level com-
piler circuitry 230B to compile the intermediate DSL neural
network model and/or input to an instruction set architecture
(IS) used to configure the neural network 150 in the bit-serial
PISA circuitry 140.

[0053] The bit-serial PISA circuitry 140 includes the plu-
rality of SRAM arrays 240. Each of the plurality of SRAM
arrays 240 serially conductively couples to another of the
SRAM arrays 240. Each of the SRAM arrays 240 represents
one layer of a recurrent neural network 150. The microcon-
troller circuitry 250 in each SRAM array 240 configures the
respective SRAM array to perform the mathematical opera-
tions, for example hit-serial computations, associated with
the recurrent neural network layer represented by the SRAM
array. In embodiments, the on-chip processor memory cir-
cuitry 130 may be configured to include any number of
SRAM arrays 240. For example, the on-chip processor
memory circuitry 130 be configured to include: 256 or more
SRAM arrays; 512 or more SRAM arrays; 1024 or more
SRAM arrays; 2048 or more SRAM arrays; 4096 or more
SRAM arrays; or 8192 or more SRAM arrays. In embodi-
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ments, each of the plurality of SRAM arrays 240 will have
the same size. For example, each of the plurality of SRAM
arrays 240 may include: a 4 KB array; an 8 KB array; a 16
KB array; a 32 KB array; or a 64 KB array.

[0054] The neural network control circuitry 210 includes
any number and/or combination of currently available and/
or future developed electronic components, semiconductor
devices, and/or logic elements capable of providing the
recurrent neural network model to the SRAM microcon-
trollers 250, controlling the flow of information and/or data
between the bit-serial PISA circuitry 140, PISA memory
circuitry 160, and/or system memory circuitry 170; and/or
controlling the flow, transfer, or communication of input
data to and/or output data from the recurrent neural network
150. In embodiments, the processor circuitry 120 provides
all or a portion of the neural network control circuitry 210.
In other embodiments, the neural network control circuitry
210 may include stand-alone controller circuitry.

[0055] The DMA control circuitry 220 includes any num-
ber and/or combination of currently available and/or future
developed electronic components, semiconductor devices,
and/or logic elements capable of controlling the bidirec-
tional flow of information and/or data between the system
memory circuitry 170 and the PISA memory circuitry 160.
[0056] The high-level compiler circuitry 230A includes
any number and/or combination of currently available and/
or future developed electronic components, semiconductor
devices, and/or logic elements capable of converting a
neural network model and/or input data from a user supplied
high-level language to an intermediate domain specific
language (DSL), such as a data-flow graph of layer descrip-
tors. The processor circuitry 120 may provide some or all of
the high-level compiler circuitry 230A.

[0057] The low-level compiler circuitry 230B includes
any number and/or combination of currently available and/
or future developed electronic components, semiconductor
devices, and/or logic elements capable of converting the
neural network model and/or input data from the interme-
diate domain specific language (DSL) to an instruction set
architecture (ISA). In embodiments, the neural network
control circuitry 210 uses the neural network model and/or
input data ISA to configure the recurrent neural network 150.
In embodiments, each of the microcontroller circuits 250
uses the neural network model and/or input data ISA to
configure their respective SRAM array 240 to form the
recurrent neural network 150. The processor circuitry 120
may provide some or all of the low-level compiler circuitry
230B.

[0058] In operation, after the low-level compiler circuitry
230B converts the recurrent neural network model and/or
input data to the ISA, the model data representative of each
layer of the recurrent neural network 150 is loaded into the
respective SRAM array 240. In embodiments, the low-level
compiler circuitry 230B directly or indirectly provides,
transfers, or otherwise communicates the recurrent neural
network model data to the microcontroller circuitry 250 in
the respective SRAM array 240. In other embodiments, the
neural network control circuitry 210 provides, transfers, or
otherwise communicates the recurrent neural network model
data to the microcontroller circuitry 250 in the respective
SRAM array 240.

[0059] In embodiments, the neural network control cir-
cuitry 210 causes the DMA control circuitry 220 to transfer
at least a portion of the layer weights and/or layer inputs
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from the system memory circuitry 170 to the PISA memory
circuitry 160. In other embodiments, the microcontroller
circuitry 250 in some or all of the SRAM arrays 240 causes
the DMA control circuitry 220 to transfer at least a portion
of the layer weights and/or layer inputs from the system
memory circuitry 170 to the PISA memory circuitry 160. In
other embodiments, the processor circuitry 120 causes the
DMA control circuitry 220 to transfer at least a portion of the
layer weights and/or layer inputs from the system memory
circuitry 170 to the PISA memory circuitry 160. Upon
receipt in the PISA memory circuitry 160, the neural net-
work control circuitry 210 and/or the microcontroller cir-
cuitry 250 in some or all of the SRAM arrays 240 causes the
transfer of the data representative of the layer weights from
the PISA memory circuitry 160 to respective ones of the
plurality of SRAM arrays 240.

[0060] Upon configuration of the recurrent neural network
in the bit-serial PISA circuitry 140, in some embodiments,
the processor circuitry 120 may be placed into a sleep or
standby mode while the DMA control circuitry continues to
transfer data to the PISA memory circuitry 260 and/or to the
bit-serial PISA circuitry 140. The bit-serial PISA circuitry
140 then loops over mini-batches by loading inputs for the
first network layer from the PISA memory circuitry 160 and,
for each serially subsequent layer, from the buffer in the
immediately preceding SRAM array (e.g., input for SRAM
array 240, is loaded from the PISA memory circuitry 160 via
the high bandwidth connection 162, and input for SRAM
array 240, is loaded from the buffer of SRAM array 240,,_,).
Using bit-serial computation, each of the plurality of SRAM
arrays 240 determines the output for each respective layer of
the recurrent neural network 150 and stores the output in a
respective output buffer within the SRAM array 240.

[0061] FIG. 3 is a schematic diagram of an illustrative
electronic, processor-based, device 300 that includes a semi-
conductor package 110 that includes processor circuitry 120
and on-chip processor memory circuitry 130 (e.g., SRAM
memory such as cache memory circuitry or LLC memory
circuitry) configurable to provide pipelined SRAM archi-
tecture (bit-serial PISA) circuitry 140 capable of performing
bit-serial mathematical operations to provide a recurrent
neural network 150, in accordance with at least one embodi-
ment described herein. The processor-based device 300 may
additionally include one or more of the following: a graphi-
cal processing unit 312, a wireless input/output (I/O) inter-
face 320, a wired 1/O interface 330, system memory 170,
power management circuitry 350, a non-transitory storage
device 360, and a network interface 370. The following
discussion provides a brief, general description of the com-
ponents forming the illustrative processor-based device 300.
Example, non-limiting processor-based devices 300 may
include, but are not limited to: smartphones, wearable com-
puters, portable computing devices, handheld computing
devices, desktop computing devices, servers, blade server
devices, workstations, and similar.

[0062] In some embodiments, the processor-based device
300 includes graphics processor circuitry 312 capable of
executing machine-readable instruction sets and generating
an output signal capable of providing a display output to a
system user. Those skilled in the relevant art will appreciate
that the illustrated embodiments as well as other embodi-
ments may be practiced with other processor-based device
configurations, including portable electronic or handheld
electronic devices, for instance smartphones, portable com-
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puters, wearable computers, consumer electronics, personal
computers (“PCs”), network PCs, minicomputers, server
blades, mainframe computers, and the like. The processor
circuitry 120 may include any number of hardwired or
configurable circuits, some or all of which may include
programmable and/or configurable combinations of elec-
tronic components, semiconductor devices, and/or logic
elements that are disposed partially or wholly in a PC,
server, or other computing system capable of executing
machine-readable instructions.

[0063] The processor-based device 300 includes a bus or
similar communications link 316 that communicably
couples and facilitates the exchange of information and/or
data between various system components including the
processor circuitry 120, the graphics processor circuitry 312,
one or more wireless I/O interfaces 320, one or more wired
1/0 interfaces 330, the system memory 170, one or more
storage devices 360, and/or one or more network interfaces
370. The processor-based device 300 may be referred to in
the singular herein, but this is not intended to limit the
embodiments to a single processor-based device 300, since
in certain embodiments, there may be more than one pro-
cessor-based device 300 that incorporates, includes, or con-
tains any number of communicably coupled, collocated, or
remote networked circuits or devices.

[0064] The processor circuitry 120 may include any num-
ber, type, or combination of currently available or future
developed devices capable of executing machine-readable
instruction sets. The processor circuitry 120 may include but
is not limited to any current or future developed single- or
multi-core processor or microprocessor, such as: on or more
systems on a chip (SOCs); central processing units (CPUs);
digital signal processors (DSPs); graphics processing units
(GPUs); application-specific integrated circuits (ASICs),
programmable logic units, field programmable gate arrays
(FPGAs), and the like. Unless described otherwise, the
construction and operation of the various blocks shown in
FIG. 3 are of conventional design. Consequently, such
blocks need not be described in further detail herein, as they
will be understood by those skilled in the relevant art. The
bus 316 that interconnects at least some of the components
of'the processor-based device 300 may employ any currently
available or future developed serial or parallel bus structures
or architectures.

[0065] In embodiments, the processor circuitry 120 and
the on-chip processor memory circuitry 130 are disposed in
a semiconductor package 110. The semiconductor package
110 may additionally include the neural network control
circuitry 210 and/or the DMA control circuitry 220. In some
implementations, the processor circuitry 120 may provide
all or a portion of either or both the neural network control
circuitry 210 and/or the DMA control circuitry 220. The
on-chip processor memory circuitry 130 includes the bit-
serial PISA circuitry 140 that forms the recurrent neural
network 150.

[0066] The system memory 170 may include read-only
memory (“ROM”) 342 and random access memory
(“RAM”) 346. A portion of the ROM 342 may be used to
store or otherwise retain a basic input/output system
(“BIOS”) 344. The BIOS 344 provides basic functionality to
the processor-based device 300, for example by causing the
processor circuitry 120 to load and/or execute one or more
machine-readable instruction sets 314. In embodiments, at
least some of the one or more machine-readable instruction
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sets cause at least a portion of the processor circuitry 120 to
provide, create, produce, transition, and/or function as a
dedicated, specific, and particular machine, for example a
word processing machine, a digital image acquisition
machine, a media playing machine, a gaming system, a
communications device, a smartphone, or similar.

[0067] The processor-based device 300 may include at
least one wireless input/output (I/O) interface 320. The at
least one wireless 1/0O interface 320 may be communicably
coupled to one or more physical output devices 322 (tactile
devices, video displays, audio output devices, hardcopy
output devices, etc.). The at least one wireless /O interface
320 may communicably couple to one or more physical
input devices 324 (pointing devices, touchscreens, key-
boards, tactile devices, etc.). The at least one wireless 1/O
interface 320 may include any currently available or future
developed wireless 1/O interface. Example wireless 1/O
interfaces include, but are not limited to: BLUETOOTH®,
near field communication (NFC), and similar.

[0068] The processor-based device 300 may include one
or more wired input/output (/O) interfaces 330. The at least
one wired I/O interface 330 may be communicably coupled
to one or more physical output devices 322 (tactile devices,
video displays, audio output devices, hardcopy output
devices, etc.). The at least one wired 1/O interface 330 may
be communicably coupled to one or more physical input
devices 224 (pointing devices, touchscreens, keyboards,
tactile devices, etc.). The wired 1/O interface 330 may
include any currently available or future developed 1/O
interface. Example wired 1/O interfaces include but are not
limited to: universal serial bus (USB), IEEE 1394
(“FireWire™), and similar.

[0069] The processor-based device 300 may include one
or more communicably coupled, non-transitory, data storage
devices 360. The data storage devices 360 may include one
or more hard disk drives (HDDs) and/or one or more
solid-state storage devices (SSDs). The one or more data
storage devices 360 may include any current or future
developed storage appliances, network storage devices, and/
or systems. Non-limiting examples of such data storage
devices 360 may include, but are not limited to, any current
or future developed non-transitory storage appliances or
devices, such as one or more magnetic storage devices, one
or more optical storage devices, one or more electro-resis-
tive storage devices, one or more molecular storage devices,
one or more quantum storage devices, or various combina-
tions thereof. In some implementations, the one or more data
storage devices 360 may include one or more removable
storage devices, such as one or more flash drives, flash
memories, flash storage units, or similar appliances or
devices capable of communicable coupling to and decou-
pling from the processor-based device 200.

[0070] The one or more data storage devices 360 may
include interfaces or controllers (not shown) communica-
tively coupling the respective storage device or system to the
bus 316. The one or more data storage devices 360 may
store, retain, or otherwise contain machine-readable instruc-
tion sets, data structures, program modules, data stores,
databases, logical structures, and/or other data useful to the
processor circuitry 120 and/or graphics processor circuitry
312 and/or one or more applications executed on or by the
processor circuitry 120 and/or graphics processor circuitry
312. In some instances, one or more data storage devices 360
may be communicably coupled to the processor circuitry
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120, for example via the bus 316 or via one or more wired
communications interfaces 330 (e.g., Universal Serial Bus
or USB); one or more wireless communications interfaces
320 (e.g., Bluetooth®, Near Field Communication or NFC);
and/or one or more network interfaces 370 (IEEE 802.3 or
Ethernet, IEEE 802.11, or WiFi®, etc.).

[0071] The processor-based device 300 may include
power management circuitry 350 that controls one or more
operational aspects of the energy storage device 352. In
embodiments, the energy storage device 352 may include
one or more primary (i.e., non-rechargeable) or secondary
(i.e., rechargeable) batteries or similar energy storage
devices. In embodiments, the energy storage device 352 may
include one or more supercapacitors or ultracapacitors. In
embodiments, the power management circuitry 350 may
alter, adjust, or control the flow of energy from an external
power source 354 to the energy storage device 352 and/or to
the processor-based device 300. The power source 354 may
include, but is not limited to, a solar power system, a
commercial electric grid, a portable generator, an external
energy storage device, or any combination thereof.

[0072] For convenience, the processor circuitry 120, the
storage device 360, the system memory 170, the graphics
processor circuitry 312, the wireless I/O interface 320, the
wired I/O interface 330, the power management circuitry
350, and the network interface 370 are illustrated as com-
municatively coupled to each other via the bus 316, thereby
providing connectivity between the above-described com-
ponents. In alternative embodiments, the above-described
components may be communicatively coupled in a different
manner than illustrated in FIG. 3. For example, one or more
of the above-described components may be directly coupled
to other components, or may be coupled to each other, via
one or more intermediary components (not shown). In
another example, one or more of the above-described com-
ponents may be integrated into the semiconductor package
110 and/or the graphics processor circuitry 312. In some
embodiments, all or a portion of the bus 316 may be omitted
and the components are coupled directly to each other using
suitable wired or wireless connections.

[0073] FIG. 4 is a high-level flow diagram of an illustra-
tive method 400 of implementing a recurrent neural network
150 using pipelined SRAM architecture (bit-serial PISA)
circuitry 140 implemented in on-chip processor memory
circuitry 130, in accordance with at least one embodiment
described herein. Executing the neural network 150 using
bit-serial mathematical in on-chip processor memory cir-
cuitry 130 leverages the available on-chip SRAM memory,
greatly expanding the vector/tensor processing capability of
the system. Implementing the neural network 150 as bit-
serial PISA circuitry 140 using on-chip processor memory
circuitry 130 and coupling the bit-serial PISA circuitry to
PISA memory circuitry 160 using a relatively high band-
width connection 162 advantageously reduces the delays
caused by the repeated transfers of weight data, layer input
data, and layer output between the processor circuitry and
system memory in a conventional processor-based neural
network. The method 400 commences at 402.

[0074] At 404, the system 100 receives data representative
of a neural network model and neural network input data for
the neural network model. In embodiments, the neural
network model includes data representative of a recurrent
neural network 150. A system user may provide the data
representative of a neural network model and neural network

Feb. 21, 2019

input data in the form of a high-level language instruction
set. The processor circuitry 120 converts the neural network
model and neural network input data from the high-level
language instruction set to an instruction set architecture
(ISA) implementable by at least one of: the neural network
control circuitry 210 and/or the microcontroller circuitry 250
disposed in each SRAM array 240. In embodiments, the
processor circuitry 120 may store all or a portion of the ISA
neural network model and/or neural network input data in
the system memory circuitry 170.

[0075] At 406, at least one of the processor circuitry 120
and/or the neural network control circuitry 210 allocates
SRAM arrays 240 included in the bit-serial PISA circuitry
140 to implement the neural network 150. The SRAM arrays
240 are disposed in the on-chip processor memory circuitry
130. In embodiments, the SRAM arrays 240 are disposed in
processor cache memory circuitry, such as SRAM memory
array circuitry included in the processor last level cache
(LLC) circuitry 130.

[0076] At 408, at least one of the processor circuitry 120
and/or the neural network control circuitry 210 causes a
transfer of each layer of the neural network model 150,-150,,
in the ISA to the microcontroller circuitry 250,-250, in a
respective one of the plurality of SRAM arrays 240,-240,,
(where “n” represents the total number of layers included in
the neural network 150). The microcontroller circuitry 250
configures the memory elements included in the array to
perform mathematical operations (add, multiply, reduction,
etc.) using the received neural network model ISA for the
neural network layer implemented by the respective SRAM
array 240. In embodiments, the microcontroller circuitry 250
also configures input buffer circuitry and/or output buffer
circuitry within the SRAM array 240.

[0077] In embodiments, at least one of the processor
circuitry 120 and/or the neural network control circuitry 210
causes the DMA control circuitry 220 to initiate a DMA
transfer of each layer of the neural network model 150,-150,,
from the system memory circuitry 170 to the PISA memory
circuitry 160. The PISA memory circuitry 160 then transfers
each layer of the neural network model 150,-150,, to the
microcontroller circuitry 250 in respective ones of the
SRAM arrays 240. In other embodiments, the processor
circuitry 120 causes the DMA control circuitry 220 to
initiate a DMA transfer of each layer of the neural network
model 150,-150, from the system memory circuitry 170
directly to the microcontroller circuitry 250 in respective
ones of the SRAM arrays 240.

[0078] At 410, at least one of the processor circuitry 120
and/or the neural network control circuitry 210 causes the
DMA control circuitry 220 to initiate a DMA transfer of
layer weights from system memory circuitry 170 to the
PISA memory circuitry 160. Transferring the layer weights
from system memory circuitry 170 to the PISA memory
circuitry 160 beneficially allows the neural network 150 to
update and load layer weights via the relatively high band-
width connection 162, whereas if the layer weights were
maintained in the system memory circuitry 170 such updates
and loads would be temporally limited by the relatively low
bandwidth connections 172, 174 between the bit-serial PISA
circuitry 140 and the system memory circuitry 170. At least
one of the neural network control circuitry 210 and/or the
microcontroller circuitry 250 in each SRAM array 240
causes the bidirectional transfer of layer weight data
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between the PISA memory circuitry 160 and the microcon-
troller circuitry 250 in some or all of the SRAM arrays 240.
[0079] At 412, at least one of the processor circuitry 120
and/or the neural network control circuitry 210 causes the
transfer of the neural network input data to the input layer of
the neural network. In embodiments, at least one of proces-
sor circuitry 120 and/or the neural network control circuitry
210 causes the transfer of the neural network input data from
the system memory circuitry 170 to the input layer of the
neural network. In other embodiments, at least one of
processor circuitry 120 and/or the neural network control
circuitry 210 causes the transfer of the neural network input
data from the PISA memory circuitry 160 to the input layer
of the neural network. The SRAM arrays 240 that provide
the input and hidden layers of the neural network 150
include output buffers to store output data. Since the SRAM
arrays 240 are coupled sequentially, the subsequent SRAM
array 240, receives layer input data from the output buffer in
the immediately preceding SRAM array 240,, ;.

[0080] At 414, each SRAM array 240, using the model
loaded at 408 and the weights loaded at 410, performs a
bit-serial compute on the received input data and stores the
resultant output data in one or more output buffers. The
method 400 concludes at 416.

[0081] FIG. 5 is a high-level flow diagram of an illustra-
tive method 500 of transferring output data generated at the
output layer of the neural network 150 from the bit-serial
PISA circuitry 140 to system memory circuitry 170, in
accordance with at least one embodiment described herein.
The method 500 may be used in conjunction with the
method 400 described in detail above with regard to FIG. 4.
The method 500 commences at 502.

[0082] At 504, at least one of the neural network control
circuitry 210 and/or the microcontroller circuitry 250 causes
the transfer the neural network output data generated at the
SRAM array 240 providing the output layer of the neural
network to the system memory circuitry 170. In embodi-
ments, the neural network control circuitry 210 causes the
transfer of the output data from the bit-serial PISA circuitry
140 to the PISA memory circuitry 160 via the high-band-
width connection 162 and the DMA control circuitry 220
causes the transfer, via DMA, of the output data from the
PISA memory circuitry 160 to the system memory circuitry
170. In other embodiments, at least one of the neural
network control circuitry 210 and/or the microcontroller
circuitry 250 causes the transfer the neural network output
data from the bit-serial PISA circuitry 140 to the system
memory circuitry 170. The method 500 concludes at 506.
[0083] FIG. 6 is a high-level flow diagram of an illustra-
tive method 600 of compiling the high-level language neural
network model and/or input data to the instruction set
architecture (ISA) implemented by the bit-serial PISA cir-
cuitry 140 using high-level compiler circuitry 230A and
low-level compiler circuitry 230B, in accordance with at
least one embodiment described herein. The method 600
may be used in conjunction with either or both the method
400 described in detail above with regard to FIG. 4 and/or
the method 500 described in detail above with regard to FIG.
5. The method 600 commences at 602.

[0084] At 604, high-level compiler circuitry 230A com-
piles the user-supplied neural network model and/or the user
supplied neural network input data from the high-level
language to an intermediate domain specific language
(DSL). In embodiments, the high-level compiler circuitry
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230A compiles the user-supplied neural network model
and/or the user supplied neural network input data from the
high-level language to an intermediate DSL such as a
data-flow graph of layer descriptors.

[0085] At 606, low-level compiler circuitry 230B com-
piles the neural network model and/or the user supplied
neural network input data from the intermediate domain
specific language (DSL) to an instruction set architecture
(ISA) that can be implemented by the bit-serial PISA
circuitry 140 disposed in the on-chip processor memory
circuitry 130. The method 600 concludes at 608.

[0086] While FIGS. 4, 5, and 6 illustrate various opera-
tions according to one or more embodiments, it is to be
understood that not all of the operations depicted in FIGS.
4,5, and 6 are necessary for other embodiments. Indeed, it
is fully contemplated herein that in other embodiments of
the present disclosure, the operations depicted in FIGS. 4, 5,
and 6, and/or other operations described herein, may be
combined in a manner not specifically shown in any of the
drawings, but still fully consistent with the present disclo-
sure. Thus, claims directed to features and/or operations that
are not exactly shown in one drawing are deemed within the
scope and content of the present disclosure.

[0087] Embodiments of the instruction(s) detailed above
are embodied may be embodied in a “generic vector friendly
instruction format” which is detailed below. In other
embodiments, such a format is not utilized and another
instruction format is used, however, the description below of
the writemask registers, various data transformations
(swizzle, broadcast, etc.), addressing, etc. is generally appli-
cable to the description of the embodiments of the instruc-
tion(s) above. Additionally, exemplary systems, architec-
tures, and pipelines are detailed below. Embodiments of the
instruction(s) above may be executed on such systems,
architectures, and pipelines, but are not limited to those
detailed.

[0088] An instruction set may include one or more instruc-
tion formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g.,
opcode) and the operand(s) on which that operation is to be
performed and/or other data field(s) (e.g., mask). Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to as
the Advanced Vector Extensions (AVX) (AVX1 and AVX2)
and using the Vector Extensions (VEX) coding scheme has
been released and/or published (e.g., see Intel® 64 and
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1A-32 Architectures Software Developer’s Manual, Septem-
ber 2014; and see Intel® Advanced Vector Extensions
Programming Reference, October 2014).

Exemplary Instruction Formats

[0089] Embodiments of the instruction(s) described herein
may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed
below. Embodiments of the instruction(s) may be executed
on such systems, architectures, and pipelines, but are not
limited to those detailed.

Generic Vector Friendly Instruction Format

[0090] A vector friendly instruction format is an instruc-
tion format that is suited for vector instructions (e.g., there
are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar
operations are supported through the vector friendly instruc-
tion format, alternative embodiments use only vector opera-
tions the vector friendly instruction format.

[0091] FIGS. 7A-7B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments of the inven-
tion. FIG. 7A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the invention; while
FIG. 7B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the invention. Specifi-
cally, a generic vector friendly instruction format 700 for
which are defined class A and class B instruction templates,
both of which include no memory access 705 instruction
templates and memory access 720 instruction templates. The
term generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

[0092] While embodiments of the invention will be
described in which the vector friendly instruction format
supports the following: a 64 byte vector operand length (or
size) with 32 bit (4 byte) or 64 bit (8 byte) data element
widths (or sizes) (and thus, a 64 byte vector consists of either
16 doubleword-size elements or alternatively, 8 quadword-
size elements); a 64 byte vector operand length (or size) with
16 bit (2 byte) or 8 bit (1 byte) data element widths (or
sizes); a 32 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data
element widths (or sizes); and a 16 byte vector operand
length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit
(2 byte), or 8 bit (1 byte) data element widths (or sizes);
alternative embodiments may support more, less and/or
different vector operand sizes (e.g., 256 byte vector oper-
ands) with more, less, or different data element widths (e.g.,
128 bit (16 byte) data element widths).

[0093] The class A instruction templates in FIG. 7A
include: 1) within the no memory access 705 instruction
templates there is shown a no memory access, full round
control type operation 710 instruction template and a no
memory access, data transform type operation 715 instruc-
tion template; and 2) within the memory access 720 instruc-
tion templates there is shown a memory access, temporal
725 instruction template and a memory access, non-tempo-
ral 730 instruction template. The class B instruction tem-
plates in FIG. 7B include: 1) within the no memory access
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705 instruction templates there is shown a no memory
access, write mask control, partial round control type opera-
tion 712 instruction template and a no memory access, write
mask control, vsize type operation 717 instruction template;
and 2) within the memory access 720 instruction templates
there is shown a memory access, write mask control 727
instruction template.

[0094] The generic vector friendly instruction format 700
includes the following fields listed below in the order
illustrated in FIGS. 7A-7B.

[0095] Format field 740—a specific value (an instruction
format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of
instructions in the vector friendly instruction format in
instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only
the generic vector friendly instruction format.

[0096] Base operation field 742—its content distinguishes
different base operations.

[0097] Register index field 744—its content, directly or
through address generation, specifies the locations of the
source and destination operands, be they in registers or in
memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024,
64x1024) register file. While in one embodiment N may be
up to three sources and one destination register, alternative
embodiments may support more or less sources and desti-
nation registers (e.g., may support up to two sources where
one of these sources also acts as the destination, may support
up to three sources where one of these sources also acts as
the destination, may support up to two sources and one
destination).

[0098] Modifier field 746—its content distinguishes
occurrences of instructions in the generic vector instruction
format that specify memory access from those that do not;
that is, between no memory access 705 instruction templates
and memory access 720 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

[0099] Augmentation operation field 750—its content dis-
tinguishes which one of a variety of different operations to
be performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 768, an alpha field 752, and
a beta field 754. The augmentation operation field 750
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

[0100] Scale field 760—its content allows for the scaling
of the index field’s content for memory address generation
(e.g., for address generation that uses 2°°“**index+base).
[0101] Displacement Field 762A—its content is used as
part of memory address generation (e.g., for address gen-
eration that uses 2°°“**index+base+displacement).

[0102] Displacement Factor Field 762B (note that the
juxtaposition of displacement field 762A directly over dis-
placement factor field 762B indicates one or the other is
used)—its content is used as part of address generation; it
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specifies a displacement factor that is to be scaled by the size
of'a memory access (N)—where N is the number of bytes in
the memory access (e.g., for address generation that uses
2scale¥index+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 774 (described later herein) and the data
manipulation field 754C. The displacement field 762A and
the displacement factor field 762B are optional in the sense
that they are not used for the no memory access 705
instruction templates and/or different embodiments may
implement only one or none of the two.

[0103] Data element width field 764—its content distin-
guishes which one of a number of data element widths is to
be used (in some embodiments for all instructions; in other
embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

[0104] Write mask field 770—its content controls, on a per
data element position basis, whether that data element
position in the destination vector operand reflects the result
of the base operation and augmentation operation. Class A
instruction templates support merging-writemasking, while
class B instruction templates support both merging- and
zeroing-writemasking. When merging, vector masks allow
any set of elements in the destination to be protected from
updates during the execution of any operation (specified by
the base operation and the augmentation operation); in other
one embodiment, preserving the old value of each element
of the destination where the corresponding mask bit has a 0.
In contrast, when zeroing vector masks allow any set of
elements in the destination to be zeroed during the execution
of any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
770 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
invention are described in which the write mask field’s 770
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field’s 770 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 770 content to directly specify
the masking to be performed.

[0105] Immediate field 772—its content allows for the
specification of an immediate. This field is optional in the
sense that is it not present in an implementation of the
generic vector friendly format that does not support imme-
diate and it is not present in instructions that do not use an
immediate.

[0106] Class field 768—its content distinguishes between
different classes of instructions. With reference to FIGS.
7A-B, the contents of this field select between class A and
class B instructions. In FIGS. 7A-B, rounded corner squares
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are used to indicate a specific value is present in a field (e.g.,
class A 768A and class B 768B for the class field 768
respectively in FIGS. 7A-B).

Instruction Templates of Class A

[0107] In the case of the non-memory access 705 instruc-
tion templates of class A, the alpha field 752 is interpreted
as an RS field 752A, whose content distinguishes which one
of the different augmentation operation types are to be
performed (e.g., round 752A.1 and data transform 752A.2
are respectively specified for the no memory access, round
type operation 710 and the no memory access, data trans-
form type operation 715 instruction templates), while the
beta field 754 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
705 instruction templates, the scale field 760, the displace-
ment field 762A, and the displacement scale filed 762B are
not present.

No-Memory Access Instruction Templates—Full
Round Control Type Operation

[0108] In the no memory access full round control type
operation 710 instruction template, the beta field 754 is
interpreted as a round control field 754 A, whose content(s)
provide static rounding. While in the described embodi-
ments of the invention the round control field 754 A includes
a suppress all floating point exceptions (SAE) field 756 and
around operation control field 758, alternative embodiments
may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields
(e.g., may have only the round operation control field 758).
[0109] SAE field 756—its content distinguishes whether
or not to disable the exception event reporting; when the
SAE field’s 756 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler.

[0110] Round operation control field 758—its content
distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 758 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 750
content overrides that register value.

No Memory Access Instruction Templates—Data
Transform Type Operation

[0111] In the no memory access data transform type opera-
tion 715 instruction template, the beta field 754 is interpreted
as a data transform field 754B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

[0112] In the case of a memory access 720 instruction
template of class A, the alpha field 752 is interpreted as an
eviction hint field 752B, whose content distinguishes which
one of the eviction hints is to be used (in FIG. 7A, temporal
752B.1 and non-temporal 752B.2 are respectively specified
for the memory access, temporal 725 instruction template
and the memory access, non-temporal 730 instruction tem-
plate), while the beta field 754 is interpreted as a data
manipulation field 754C, whose content distinguishes which
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one of a number of data manipulation operations (also
known as primitives) is to be performed (e.g., no manipu-
lation; broadcast; up conversion of a source; and down
conversion of a destination). The memory access 720
instruction templates include the scale field 760, and option-
ally the displacement field 762A or the displacement scale
field 762B.

[0113] Vector memory instructions perform vector loads
from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instruc-
tions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is
dictated by the contents of the vector mask that is selected
as the write mask.

Memory Access Instruction Templates—Temporal

[0114] Temporal data is data likely to be reused soon
enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways,
including ignoring the hint entirely.

Memory Access Instruction
Templates—Non-Temporal

[0115] Non-temporal data is data unlikely to be reused
soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however,
a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0116] In the case of the instruction templates of class B,
the alpha field 752 is interpreted as a write mask control (Z)
field 752C, whose content distinguishes whether the write
masking controlled by the write mask field 770 should be a
merging or a zeroing.

[0117] In the case of the non-memory access 705 instruc-
tion templates of class B, part of the beta field 754 is
interpreted as an RL field 757 A, whose content distinguishes
which one of the different augmentation operation types are
to be performed (e.g., round 757A.1 and vector length
(VSIZE) 757A.2 are respectively specified for the no
memory access, write mask control, partial round control
type operation 712 instruction template and the no memory
access, write mask control, VSIZE type operation 717
instruction template), while the rest of the beta field 754
distinguishes which of the operations of the specified type is
to be performed. In the no memory access 705 instruction
templates, the scale field 760, the displacement field 762A,
and the displacement scale filed 762B are not present.
[0118] In the no memory access, write mask control,
partial round control type operation 710 instruction tem-
plate, the rest of the beta field 754 is interpreted as a round
operation field 759A and exception event reporting is dis-
abled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating
point exception handler).

[0119] Round operation control field 759A—just as round
operation control field 758, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 759A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the invention where
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a processor includes a control register for specifying round-
ing modes, the round operation control field’s 750 content
overrides that register value.

[0120] In the no memory access, write mask control,
VSIZE type operation 717 instruction template, the rest of
the beta field 754 is interpreted as a vector length field 759B,
whose content distinguishes which one of a number of data
vector lengths is to be performed on (e.g., 128, 256, or 512
byte).

[0121] In the case of a memory access 720 instruction
template of class B, part of the beta field 754 is interpreted
as a broadcast field 757B, whose content distinguishes
whether or not the broadcast type data manipulation opera-
tion is to be performed, while the rest of the beta field 754
is interpreted the vector length field 759B. The memory
access 720 instruction templates include the scale field 760,
and optionally the displacement field 762A or the displace-
ment scale field 762B.

[0122] With regard to the generic vector friendly instruc-
tion format 700, a full opcode field 774 is shown including
the format field 740, the base operation field 742, and the
data element width field 764. While one embodiment is
shown where the full opcode field 774 includes all of these
fields, the full opcode field 774 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 774 provides the operation code (opcode).
[0123] The augmentation operation field 750, the data
element width field 764, and the write mask field 770 allow
these features to be specified on a per instruction basis in the
generic vector friendly instruction format.

[0124] The combination of write mask field and data
element width field create typed instructions in that they
allow the mask to be applied based on different data element
widths.

[0125] The various instruction templates found within
class A and class B are beneficial in different situations. In
some embodiments of the invention, different processors or
different cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the invention). Also, a single
processor may include multiple cores, all of which support
the same class or in which different cores support different
class. For instance, in a processor with separate graphics and
general purpose cores, one of the graphics cores intended
primarily for graphics and/or scientific computing may
support only class A, while one or more of the general
purpose cores may be high performance general purpose
cores with out of order execution and register renaming
intended for general-purpose computing that support only
class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-
order or out-of-order cores that support both class A and
class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would
be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
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form having only instructions of the class(es) supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction
Format

[0126] FIG. 8is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 8 shows a specific
vector friendly instruction format 800 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 800 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 7 into which the fields
from FIG. 8 map are illustrated.

[0127] It should be understood that, although embodi-
ments of the invention are described with reference to the
specific vector friendly instruction format 800 in the context
of the generic vector friendly instruction format 700 for
illustrative purposes, the invention is not limited to the
specific vector friendly instruction format 800 except where
claimed. For example, the generic vector friendly instruction
format 700 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction
format 800 is shown as having fields of specific sizes. By
way of specific example, while the data element width field
764 is illustrated as a one bit field in the specific vector
friendly instruction format 800, the invention is not so
limited (that is, the generic vector friendly instruction format
700 contemplates other sizes of the data element width field
764).

[0128] The generic vector friendly instruction format 700
includes the following fields listed below in the order
illustrated in FIG. 8A.

[0129] EVEX Prefix (Bytes 0-3) 802—is encoded in a
four-byte form.
[0130] Format Field 740 (EVEX Byte 0, bits [7:0])—the

first byte (EVEX Byte 0) is the format field 740 and it
contains 0x62 (the unique value used for distinguishing the
vector friendly instruction format in one embodiment of the
invention).

[0131] The second-fourth bytes (EVEX Bytes 1-3) include
a number of bit fields providing specific capability.

[0132] REX field 805 (EVEX Byte 1, bits [7-5])—consists
of a EVEX R bit field (EVEX Byte 1, bit [7]-R), EVEX.X
bit field (EVEX byte 1, bit [6]-X), and 757BEX byte 1,
bit[5]-B). The EVEX.R, EVEX.X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using is complement form, i.e.
ZMMO is encoded as 1111B, ZMM1S5 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.
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[0133] REX' field 710—this is the first part of the REX'
field 710 and is the EVEX.R' bit field (EVEX Byte 1, bit
[4]-R") that is used to encode either the upper 16 or lower 16
of the extended 32 register set. In one embodiment of the
invention, this bit, along with others as indicated below, is
stored in bit inverted format to distinguish (in the well-
known x86 32-bit mode) from the BOUND instruction,
whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11 in the
MOD field; alternative embodiments of the invention do not
store this and the other indicated bits below in the inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, R'Rrrr is formed by combining EVEX.R',
EVEX R, and the other RRR from other fields.

[0134] Opcode map field 815 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

[0135] Data element width field 764 (EVEX byte 2, bit
[7]-W)—is represented by the notation EVEX.W. EVEX.W
is used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

[0136] EVEX.vvvv 820 (EVEX Byte 2, bits [6:3]-vvvv)—
the role of EVEX.vvvv may include the following: 1)
EVEX.vvvv encodes the first source register operand, speci-
fied in inverted (1 s complement) form and is valid for
instructions with 2 or more source operands; 2) EVEX . vvvv
encodes the destination register operand, specified in 1 s
complement form for certain vector shifts; or 3) EVEX .vvvv
does not encode any operand, the field is reserved and
should contain 1111b. Thus, EVEX.vvvv field 820 encodes
the 4 low-order bits of the first source register specifier
stored in inverted (1 s complement) form. Depending on the
instruction, an extra different EVEX bit field is used to
extend the specifier size to 32 registers.

[0137] EVEX.U 768 Class field (EVEX byte 2, bit [2]-
U)—If EVEX.U=0, it indicates class A or EVEX.UO; if
EVEX.U=1, it indicates class B or EVEX.U1.

[0138] Prefix encoding field 825 (EVEX byte 2, bits
[1:0]-pp)—provides additional bits for the base operation
field. In addition to providing support for the legacy SSE
instructions in the EVEX prefix format, this also has the
benefit of compacting the SIMD prefix (rather than requiring
a byte to express the SIMD prefix, the EVEX prefix requires
only 2 bits). In one embodiment, to support legacy SSE
instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these
legacy SIMD prefixes are encoded into the SIMD prefix
encoding field; and at runtime are expanded into the legacy
SIMD prefix prior to being provided to the decoder’s PLA
(so the PLA can execute both the legacy and EVEX format
of these legacy instructions without modification). Although
newer instructions could use the EVEX prefix encoding
field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but
allow for different meanings to be specified by these legacy
SIMD prefixes. An alternative embodiment may redesign
the PLA to support the 2 bit SIMD prefix encodings, and
thus not require the expansion.

[0139] Alpha field 752 (EVEX byte 3, bit [7]-EH; also
known as EVEX.EH, EVEX.rs, EVEX.RL, EVEX.write
mask control, and EVEX.N; also illustrated with a)—as
previously described, this field is context specific.

[0140] Beta field 754 (EVEX byte 3, bits [6:4]-SSS, also
known as EVEX.s, ,, EVEXr, ,, EVEX.rrl, EVEX.LLO,
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EVEX.LLB; also illustrated with Ppp—as previously
described, this field is context specific.

[0141] REX' field 710—this is the remainder of the REX"
field and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V")
that may be used to encode either the upper 16 or lower 16
of the extended 32 register set. This bit is stored in bit
inverted format. A value of 1 is used to encode the lower 16
registers. In other words, V'VVVV is formed by combining
EVEX.V', EVEX.vvvv.

[0142] Write mask field 770 (EVEX byte 3, bits [2:0]-
kkk)—its content specifies the index of a register in the write
mask registers as previously described. In one embodiment
of the invention, the specific value EVEX kkk=000 has a
special behavior implying no write mask is used for the
particular instruction (this may be implemented in a variety
of ways including the use of a write mask hardwired to all
ones or hardware that bypasses the masking hardware).
[0143] Real Opcode Field 830 (Byte 4) is also known as
the opcode byte. Part of the opcode is specified in this field.
[0144] MOD R/M Field 840 (Byte 5) includes MOD field
842, Reg field 844, and R/M field 846. As previously
described, the MOD field’s 842 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 844 can be summarized to two
situations: encoding either the destination register operand
or a source register operand, or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 846 may include the following:
encoding the instruction operand that references a memory
address, or encoding either the destination register operand
or a source register operand.

[0145] Scale, Index, Base (SIB) Byte (Byte 6)—As pre-
viously described, the scale field’s 750 content is used for
memory address generation. SIBxxx 854 and SIB.bbb
856—the contents of these fields have been previously
referred to with regard to the register indexes Xxxx and
Bbbb.

[0146] Displacement field 762A (Bytes 7-10)—when
MOD field 842 contains 10, bytes 7-10 are the displacement
field 762A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.
[0147] Displacement factor field 762B (Byte 7)—when
MOD field 842 contains 01, byte 7 is the displacement factor
field 762B. The location of this field is that same as that of
the legacy x86 instruction set 8-bit displacement (disp8),
which works at byte granularity. Since disp8 is sign
extended, it can only address between —128 and 127 bytes
offsets; in terms of 64 byte cache lines, disp8 uses 8 bits that
can be set to only four really useful values —128, -64, 0, and
64; since a greater range is often needed, disp32 is used;
however, disp32 requires 4 bytes. In contrast to disp8 and
disp32, the displacement factor field 762B is a reinterpre-
tation of disp8; when using displacement factor field 762B,
the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 762B substitutes the legacy x86 instruction set 8-bit
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displacement. Thus, the displacement factor field 762B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset). Immediate field 772
operates as previously described.

Full Opcode Field

[0148] FIG. 8B is a block diagram illustrating the fields of
the specific vector friendly instruction format 800 that make
up the full opcode field 774 according to one embodiment of
the invention. Specifically, the full opcode field 774 includes
the format field 740, the base operation field 742, and the
data element width (W) field 764. The base operation field
742 includes the prefix encoding field 825, the opcode map
field 815, and the real opcode field 830.

Register Index Field

[0149] FIG. 8C is a block diagram illustrating the fields of
the specific vector friendly instruction format 800 that make
up the register index field 744 according to one embodiment
of the invention. Specifically, the register index field 744
includes the REX field 805, the REX' field 810, the MODR/
M.reg field 844, the MODR/M.r/m field 846, the VVVV
field 820, xxx field 854, and the bbb field 856.

Augmentation Operation Field

[0150] FIG. 8D is a block diagram illustrating the fields of
the specific vector friendly instruction format 800 that make
up the augmentation operation field 750 according to one
embodiment of the invention. When the class (U) field 768
contains 0, it signifies EVEX.UO (class A 768A); when it
contains 1, it signifies EVEX.U1 (class B 768B). When U=0
and the MOD field 842 contains 11 (signifying a no memory
access operation), the alpha field 752 (EVEX byte 3, bit
[7]-ER) is interpreted as the rs field 752A. When the rs field
752A contains a 1 (round 752A.1), the beta field 754 (EVEX
byte 3, bits [6:4]-SSS) is interpreted as the round control
field 754A. The round control field 754 A includes a one bit
SAE field 756 and a two bit round operation field 758. When
the rs field 752A contains a 0 (data transform 752A.2), the
beta field 754 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as a three bit data transform field 754B. When U=0 and the
MOD field 842 contains 00, 01, or 10 (signifying a memory
access operation), the alpha field 752 (EVEX byte 3, bit
[7]-EH) is interpreted as the eviction hint (EH) field 752B
and the beta field 754 (EVEX byte 3, bits [6:4]-SSS) is
interpreted as a three bit data manipulation field 754C.

[0151] When U=1, the alpha field 752 (EVEX byte 3, bit
[7]1-EH) is interpreted as the write mask control (Z) field
752C. When U=1 and the MOD field 842 contains 11
(signifying a no memory access operation), part of the beta
field 754 (EVEX byte 3, bit [4]-S,) is interpreted as the RL
field 757A; when it contains a 1 (round 757A.1) the rest of
the beta field 754 (EVEX byte 3, bit [6-5]-S,_,) is interpreted
as the round operation field 759A, while when the RL field
757 A contains a 0 (VSIZE 757.A2) the rest of the beta field
754 (EVEX byte 3, bit [6-5]-S,_,) is interpreted as the vector
length field 759B (EVEX byte 3, bit [6-5]-L, ;). When U=1
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and the MOD field 842 contains 00, 01, or 10 (signifying a
memory access operation), the beta field 754 (EVEX byte 3,
bits [6:4]-SSS) is interpreted as the vector length field 759B
(EVEX byte 3, bit [6-5]-L, ) and the broadcast field 757B
(EVEX byte 3, bit [4]-B).

Exemplary Register Architecture

[0152] FIG. 9 is a block diagram of a register architecture
900 according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 910 that
are 512 bits wide; these registers are referenced as zmm0
through zmm31. The lower order 256 bits of the lower 16
zmm registers are overlaid on registers ymm0-16. The lower
order 128 bits of the lower 16 zmm registers (the lower order
128 bits of the ymm registers) are overlaid on registers
xmm0-15. The specific vector friendly instruction format
800 operates on these overlaid register file as illustrated in
the below tables.

Adjustable Vector

Length Class Operations Registers

Instruction A (FIG. 7A;
Templates that do U = 0)
not include the

710, 715, zmm registers (the vector
725, 730 length is 64 byte)

vector length B (FIG. 7B; 712 zmm registers (the vector
field 759B U=1) length is 64 byte)
Instruction B (FIG. 7B; 717, 727 zmm, ymm, or Xmm

registers (the vector length
is 64 byte, 32 byte, or 16

templates that do U =1)
include the vector

length field byte) depending on the
759B vector length field 759B
[0153] In other words, the vector length field 759B selects

between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 759B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
800 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

[0154] Write mask registers 915—in the embodiment
illustrated, there are 8 write mask registers (k0 through k7),
each 64 bits in size. In an alternate embodiment, the write
mask registers 915 are 16 bits in size. As previously
described, in one embodiment of the invention, the vector
mask register k0 cannot be used as a write mask; when the
encoding that would normally indicate k0 is used for a write
mask, it selects a hardwired write mask of OXFFFF, effec-
tively disabling write masking for that instruction.

[0155] General-purpose registers 925—in the embodi-
ment illustrated, there are sixteen 64-bit general-purpose
registers that are used along with the existing x86 addressing
modes to address memory operands. These registers are
referenced by the names RAX, RBX, RCX, RDX, RBP, RSI,
RDI, RSP, and R8 through R15.

[0156] Scalar floating point stack register file (x87 stack)
945, on which is aliased the MMX packed integer flat
register file 950—in the embodiment illustrated, the x87
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stack is an eight-element stack used to perform scalar
floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX
registers are used to perform operations on 64-bit packed
integer data, as well as to hold operands for some operations
performed between the MMX and XMM registers.

[0157] Alternative embodiments of the invention may use
wider or narrower registers. Additionally, alternative
embodiments of the invention may use more, less, or dif-
ferent register files and registers.

Exemplary Core Architectures, Processors, and
Computer Architectures

[0158] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

[0159] FIG. 10A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention. FIG. 10B is a block
diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renam-
ing, out-of-order issue/execution architecture core to be
included in a processor according to embodiments of the
invention. The solid lined boxes in FIGS. 10A-B illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[0160] In FIG. 10A, a processor pipeline 1000 includes a
fetch stage 1002, a length decode stage 1004, a decode stage
1006, an allocation stage 1008, a renaming stage 1010, a
scheduling (also known as a dispatch or issue) stage 1012,
a register read/memory read stage 1014, an execute stage
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1016, a write back/memory write stage 1018, an exception
handling stage 1022, and a commit stage 1024.

[0161] FIG. 10B shows processor core 1090 including a
front end unit 1030 coupled to an execution engine unit
1050, and both are coupled to a memory unit 1070. The core
1090 may be a reduced instruction set computing (RISC)
core, a complex instruction set computing (CISC) core, a
very long instruction word (VLIW) core, or a hybrid or
alternative core type. The core 1090 may additionally
include SRAM circuitry having a different ISA suitable of
implementation as bit-serial PISA circuitry 140 formed in
the on-chip processor memory circuitry 130. As yet another
option, the core 1090 may be a special-purpose core, such
as, for example, a network or communication core, com-
pression engine, coprocessor core, general purpose comput-
ing graphics processing unit (GPGPU) core, graphics core,
or the like.

[0162] The front end unit 1030 includes a branch predic-
tion unit 1032 coupled to an instruction cache unit 1034,
which is coupled to an instruction translation lookaside
buffer (TL.B) 1036, which is coupled to an instruction fetch
unit 1038, which is coupled to a decode unit 1040. The
decode unit 1040 (or decoder) may decode instructions, and
generate as an output one or more micro-operations, micro-
code entry points, microinstructions, other instructions, or
other control signals, which are decoded from, or which
otherwise reflect, or are derived from, the original instruc-
tions. The decode unit 1040 may be implemented using
various different mechanisms. Examples of suitable mecha-
nisms include, but are not limited to, look-up tables, hard-
ware implementations, programmable logic arrays (PLAs),
microcode read only memories (ROMs), etc. In one embodi-
ment, the core 1090 includes a microcode ROM or other
medium that stores microcode for certain macroinstructions
(e.g., in decode unit 1040 or otherwise within the front end
unit 1030). The decode unit 1040 is coupled to a rename/
allocator unit 1052 in the execution engine unit 1050.

[0163] The execution engine unit 1050 includes the
rename/allocator unit 1052 coupled to a retirement unit 1054
and a set of one or more scheduler unit(s) 1056. The
scheduler unit(s) 1056 represents any number of different
schedulers, including reservations stations, central instruc-
tion window, etc. The scheduler unit(s) 1056 is coupled to
the physical register file(s) unit(s) 1058. Each of the physical
register file(s) units 1058 represents one or more physical
register files, different ones of which store one or more
different data types, such as scalar integer, scalar floating
point, packed integer, packed floating point, vector integer,
vector floating point, status (e.g., an instruction pointer that
is the address of the next instruction to be executed), etc. In
one embodiment, the physical register file(s) unit 1058
comprises a vector registers unit, a write mask registers unit,
and a scalar registers unit. These register units may provide
architectural vector registers, vector mask registers, and
general purpose registers. The physical register file(s) unit(s)
1058 is overlapped by the retirement unit 1054 to illustrate
various ways in which register renaming and out-of-order
execution may be implemented (e.g., using a reorder buffer
(s) and a retirement register file(s); using a future file(s), a
history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement
unit 1054 and the physical register file(s) unit(s) 1058 are
coupled to the execution cluster(s) 1060. The execution
cluster(s) 1060 includes a set of one or more execution units
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1062 and a set of one or more memory access units 1064.
The execution units 1062 may perform various operations
(e.g., shifts, addition, subtraction, multiplication) and on
various types of data (e.g., scalar floating point, packed
integer, packed floating point, vector integer, vector floating
point). While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 1056, physical register
file(s) unit(s) 1058, and execution cluster(s) 1060 are shown
as being possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.g.,
a scalar integer pipeline, a scalar floating point/packed
integer/packed floating point/vector integer/vector floating
point pipeline, and/or a memory access pipeline that each
have their own scheduler unit, physical register file(s) unit,
and/or execution cluster—and in the case of a separate
memory access pipeline, certain embodiments are imple-
mented in which only the execution cluster of this pipeline
has the memory access unit(s) 1064). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

[0164] The set of memory access units 1064 is coupled to
the memory unit 1070, which includes a data TLB unit 1072
coupled to a data cache unit 1074 coupled to a level 2 (L2)
cache unit 1076. In one exemplary embodiment, the memory
access units 1064 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 1072 in the memory unit 1070. The instruc-
tion cache unit 1034 is further coupled to a level 2 (L2)
cache unit 1076 in the memory unit 1070. The [.2 cache unit
1076 is coupled to one or more other levels of cache and
eventually to a main memory.

[0165] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 1000 as follows: 1) the instruction
fetch 1038 performs the fetch and length decoding stages
1002 and 1004; 2) the decode unit 1040 performs the decode
stage 1006; 3) the rename/allocator unit 1052 performs the
allocation stage 1008 and renaming stage 1010; 4) the
scheduler unit(s) 1056 performs the schedule stage 1012; 5)
the physical register file(s) unit(s) 1058 and the memory unit
1070 perform the register read/memory read stage 1014; the
execution cluster 1060 perform the execute stage 1016; 6)
the memory unit 1070 and the physical register file(s) unit(s)
1058 perform the write back/memory write stage 1018; 7)
various units may be involved in the exception handling
stage 1022; and 8) the retirement unit 1054 and the physical
register file(s) unit(s) 1058 perform the commit stage 1024.
[0166] The core 1090 may support one or more instruc-
tions sets (e.g., the x86 instruction set (with some extensions
that have been added with newer versions); the MIPS
instruction set of MIPS Technologies of Sunnyvale, Calif';
the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, Calif.),
including the instruction(s) described herein. In one embodi-
ment, the core 1090 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2), thereby allow-
ing the operations used by many multimedia applications to
be performed using packed data.

[0167] It should be understood that the core may support
multithreading (executing two or more parallel sets of
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operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0168] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 1034/1074
and a shared L2 cache unit 1076, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary in-Order Core Architecture

[0169] FIGS. 11A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory I/O interfaces, and other necessary I/O logic,
depending on the application.

[0170] FIG. 11A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 1102 and with its local subset of the Level 2 (L2)
cache 1104, according to embodiments of the invention. In
one embodiment, an instruction decoder 1100 supports the
x86 instruction set with a packed data instruction set exten-
sion. An L1 cache 1106 allows low-latency accesses to cache
memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1108 and
a vector unit 1110 use separate register sets (respectively,
scalar registers 1112 and vector registers 1114) and data
transferred between them is written to memory and then read
back in from a level 1 (L1) cache 1106, alternative embodi-
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

[0171] The local subset of the L2 cache 1104 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the .2 cache 1104.
Data read by a processor core is stored in its [.2 cache subset
1104 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets.
Data written by a processor core is stored in its own L2
cache subset 1104 and is flushed from other subsets, if
necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such
as processor cores, [.2 caches and other logic blocks to
communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

[0172] FIG. 11B is an expanded view of part of the
processor core in FIG. 11 A according to embodiments of the
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invention. FIG. 11B includes an L1 data cache 1106 A part of
the .1 cache 1104, as well as more detail regarding the
vector unit 1110 and the vector registers 1114. Specifically,
the vector unit 1110 is a 16-wide vector processing unit
(VPU) (see the 16-wide AL U 1128), which executes one or
more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register
inputs with swizzle unit 1120, numeric conversion with
numeric convert units 1122A-B, and replication with repli-
cation unit 1124 on the memory input. Write mask registers
1126 allow predicating resulting vector writes.

[0173] FIG. 12 is a block diagram of a processor 1200 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined
boxes in FIG. 12 illustrate a processor 1200 with a single
core 1202A, a system agent 1210, a set of one or more bus
controller units 1216, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1200
with multiple cores 1202A-N, a set of one or more integrated
memory controller unit(s) 1214 in the system agent unit
1210, and special purpose logic 1208.

[0174] Thus, different implementations of the processor
1200 may include: 1) a CPU with the special purpose logic
1208 being integrated graphics and/or scientific (through-
put) logic (which may include one or more cores), and the
cores 1202A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-
of-order cores, a combination of the two); 2) a coprocessor
with the cores 1202A-N being a large number of special
purpose cores intended primarily for graphics and/or scien-
tific (throughput); and 3) a coprocessor with the cores
1202A-N being a large number of general purpose in-order
cores. Thus, the processor 1200 may be a general-purpose
processor, coprocessor or special-purpose processor, such
as, for example, a network or communication processor,
compression engine, graphics processor, GPGPU (general
purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more
cores), embedded processor, or the like. The processor may
be implemented on one or more chips. The processor 1200
may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0175] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 1206, and external memory (not shown) coupled to the
set of integrated memory controller units 1214. The set of
shared cache units 1206 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1212 interconnects the integrated
graphics logic 1208, the set of shared cache units 1206, and
the system agent unit 1210/integrated memory controller
unit(s) 1214, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1206 and cores 1202-A-N.

[0176] In some embodiments, one or more of the cores
1202A-N are capable of multi-threading. The system agent
1210 includes those components coordinating and operating
cores 1202A-N. The system agent unit 1210 may include for
example a power control unit (PCU) and a display unit. The
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PCU may be or include logic and components needed for
regulating the power state of the cores 1202A-N and the
integrated graphics logic 1208. The display unit is for
driving one or more externally connected displays.

[0177] The cores 1202A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1202A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0178] FIGS. 13-16 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0179] Referring now to FIG. 13, shown is a block dia-
gram of a system 1300 in accordance with one embodiment
of the present invention. The system 1300 may include one
or more processors 1310, 1315, which are coupled to a
controller hub 1320. In one embodiment the controller hub
1320 includes a graphics memory controller hub (GMCH)
1390 and an Input/Output Hub (IOH) 1350 (which may be
on separate chips); the GMCH 1390 includes memory and
graphics controllers to which are coupled memory 1340 and
a coprocessor 1345; the IOH 1350 is couples input/output
(I/O) devices 1360 to the GMCH 1390. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1340
and the coprocessor 1345 are coupled directly to the pro-
cessor 1310, and the controller hub 1320 in a single chip
with the IOH 1350.

[0180] The optional nature of additional processors 1315
is denoted in FIG. 13 with broken lines. Each processor
1310, 1315 may include one or more of the processing cores
described herein and may be some version of the processor
1200.

[0181] The memory 1340 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1320 communicates with
the processor(s) 1310, 1315 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 1395.
[0182] In one embodiment, the coprocessor 1345 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1320 may include an integrated graphics accel-
erator.

[0183] There can be a variety of differences between the
physical resources 1310, 1315 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
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[0184] In one embodiment, the processor 1310 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 1310 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1345. Accordingly,
the processor 1310 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1345.
Coprocessor(s) 1345 accept and execute the received copro-
cessor instructions.

[0185] Referring now to FIG. 14, shown is a block dia-
gram of a first more specific exemplary system 1400 in
accordance with an embodiment of the present invention. As
shown in FIG. 14, multiprocessor system 1400 is a point-
to-point interconnect system, and includes a first processor
1470 and a second processor 1480 coupled via a point-to-
point interconnect 1450. Each of processors 1470 and 1480
may be some version of the processor 1200. In one embodi-
ment of the invention, processors 1470 and 1480 are respec-
tively processors 1310 and 1315, while coprocessor 1438 is
coprocessor 1345. In another embodiment, processors 1470
and 1480 are respectively processor 1310 coprocessor 1345.
[0186] Processors 1470 and 1480 are shown including
integrated memory controller (IMC) units 1472 and 1482,
respectively. Processor 1470 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1476 and
1478; similarly, second processor 1480 includes P-P inter-
faces 1486 and 1488. Processors 1470, 1480 may exchange
information via a point-to-point (P-P) interface 1450 using
P-P interface circuits 1478, 1488. As shown in FIG. 14,
IMCs 1472 and 1482 couple the processors to respective
memories, namely a memory 1432 and a memory 1434,
which may be portions of main memory locally attached to
the respective processors.

[0187] Processors 1470, 1480 may each exchange infor-
mation with a chipset 1490 via individual P-P interfaces
1452, 1454 using point to point interface circuits 1476,
1494, 1486, 1498. Chipset 1490 may optionally exchange
information with the coprocessor 1438 via a high-perfor-
mance interface 1439. In one embodiment, the coprocessor
1438 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0188] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0189] Chipset 1490 may be coupled to a first bus 1416 via
an interface 1496. In one embodiment, first bus 1416 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0190] As shown in FIG. 14, various I/O devices 1414
may be coupled to first bus 1416, along with a bus bridge
1418 which couples first bus 1416 to a second bus 1420. In
one embodiment, one or more additional processor(s) 1415,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
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mable gate arrays, or any other processor, are coupled to first
bus 1416. In one embodiment, second bus 1420 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1420 including, for example, a keyboard and/or
mouse 1422, communication devices 1427 and a storage
unit 1428 such as a disk drive or other mass storage device
which may include instructions/code and data 1430, in one
embodiment. Further, an audio I/O 1424 may be coupled to
the second bus 1420. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 14, a system may implement a multi-drop bus
or other such architecture.

[0191] Referring now to FIG. 15, shown is a block dia-
gram of a second more specific exemplary system 1500 in
accordance with an embodiment of the present invention.
Like elements in FIGS. 14 and 15 bear like reference
numerals, and certain aspects of FIG. 14 have been omitted
from FIG. 15 in order to avoid obscuring other aspects of
FIG. 15.

[0192] FIG. 15 illustrates that the processors 1470, 1480
may include integrated memory and /O control logic
(“CL”) 1472 and 1482, respectively. Thus, the CL 1472,
1482 include integrated memory controller units and include
1/0 control logic. FIG. 15 illustrates that not only are the
memories 1432, 1434 coupled to the CL 1472, 1482, but also
that 1/0 devices 1514 are also coupled to the control logic
1472, 1482. Legacy 1/O devices 1515 are coupled to the
chipset 1490.

[0193] Referring now to FIG. 16, shown is a block dia-
gram of a SoC 1600 in accordance with an embodiment of
the present invention. Similar elements in FIG. 12 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 16, an interconnect
unit(s) 1602 is coupled to: an application processor 1610
which includes a set of one or more cores 202A-N and
shared cache unit(s) 1206; a system agent unit 1210; a bus
controller unit(s) 1216; an integrated memory controller
unit(s) 1214; a set or one or more coprocessors 1620 which
may include integrated graphics logic, an image processor,
an audio processor, and a video processor; an static random
access memory (SRAM) unit 1630; a direct memory access
(DMA) unit 1632; and a display unit 1640 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1620 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

[0194] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0195] Program code, such as code 1430 illustrated in
FIG. 14, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
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processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0196] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0197] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0198] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0199] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

Emulation (Including Binary Translation, Code
Morphing, Etc.)

[0200] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0201] FIG. 17 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
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ware, hardware, or various combinations thereof. FIG. 17
shows a program in a high level language 1702 may be
compiled using an x86 compiler 1704 to generate x86 binary
code 1706 that may be natively executed by a processor with
at least one x86 instruction set core 1716. The processor with
at least one x86 instruction set core 1716 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1704
represents a compiler that is operable to generate x86 binary
code 1706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1716. Similarly,
FIG. 17 shows the program in the high level language 1702
may be compiled using an alternative instruction set com-
piler 1708 to generate alternative instruction set binary code
1710 that may be natively executed by a processor without
at least one x86 instruction set core 1714 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1712 is used to convert the
x86 binary code 1706 into code that may be natively
executed by the processor without an x86 instruction set
core 1714. This converted code is not likely to be the same
as the alternative instruction set binary code 1710 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1712
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1706.

[0202] As used in this application and in the claims, a list
of items joined by the term “and/or” can mean any combi-
nation of the listed items. For example, the phrase “A, B
and/or C” can mean A; B; C; Aand B; A and C; B and C;
or A, B and C. As used in this application and in the claims,
a list of items joined by the term “at least one of” can mean
any combination of the listed terms. For example, the
phrases “at least one of A, B or C” can mean A; B; C; A and
B; Aand C; B and C; or A, B and C.

[0203] As used in any embodiment herein, the terms
“system” or “module” may refer to, for example, software,
firmware and/or circuitry configured to perform any of the
aforementioned operations. Software may be embodied as a
software package, code, instructions, instruction sets and/or
data recorded on non-transitory computer readable storage
mediums. Firmware may be embodied as code, instructions
or instruction sets and/or data that are hard-coded (e.g.,
nonvolatile) in memory devices.

[0204] As used in any embodiment herein, the term “cir-
cuitry” may comprise, for example, singly or in any com-
bination, hardwired circuitry, programmable circuitry such
as computer processors comprising one or more individual
instruction processing cores, state machine circuitry, and/or
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firmware that stores instructions executed by programmable
circuitry or future computing paradigms including, for
example, massive parallelism, analog or quantum comput-
ing, hardware embodiments of accelerators such as neural
net processors and non-silicon implementations of the
above. The circuitry may, collectively or individually, be
embodied as circuitry that forms part of a larger system, for
example, an integrated circuit (IC), system on-chip (SoC),
desktop computers, laptop computers, tablet computers,
servers, smartphones, etc.

[0205] Any of the operations described herein may be
implemented in a system that includes one or more mediums
(e.g., non-transitory storage mediums) having stored therein,
individually or in combination, instructions that when
executed by one or more processors perform the methods.
Here, the processor may include, for example, a server CPU,
a mobile device CPU, and/or other programmable circuitry.
Also, it is intended that operations described herein may be
distributed across a plurality of physical devices, such as
processing structures at more than one different physical
location. The storage medium may include any type of
tangible medium, for example, any type of disk including
hard disks, floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMSs) such as dynamic and static RAMs, erasable
programmable read-only memories (EPROMs), electrically
erasable programmable read-only memories (EEPROMs),
flash memories, Solid State Disks (SSDs), embedded mul-
timedia cards (eMMCs), secure digital input/output (SDIO)
cards, magnetic or optical cards, or any type of media
suitable for storing electronic instructions. Other embodi-
ments may be implemented as software executed by a
programmable control device.

[0206] Thus, the present disclosure is directed to systems
and methods of implementing a neural network using in-
memory, bit-serial, mathematical operations performed by a
pipelined SRAM architecture (bit-serial PISA) circuitry
disposed in on-chip processor memory circuitry. The on-
chip processor memory circuitry may include processor last
level cache (LLC) circuitry. The bit-serial PISA circuitry is
coupled to PISA memory circuitry via a relatively high-
bandwidth connection to beneficially facilitate the storage
and retrieval of layer weights by the bit-serial PISA circuitry
during execution. Direct memory access (DMA) circuitry
transfers the neural network model and input data from
system memory to the bit-serial PISA memory and also
transfers output data from the PISA memory circuitry to
system memory circuitry. Thus, the systems and methods
described herein beneficially leverage the on-chip processor
memory circuitry to perform a relatively large number of
vector/tensor calculations without burdening the processor
circuitry.

[0207] The following examples pertain to further embodi-
ments. The following examples of the present disclosure
may comprise subject material such as at least one device,
a method, at least one machine-readable medium for storing
instructions that when executed cause a machine to perform
acts based on the method, means for performing acts based
on the method and/or a system for implementing a neural
network using in-memory, bit-serial, mathematical opera-
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tions performed by a pipelined SRAM architecture (bit-
serial PISA) circuitry disposed in on-chip processor memory
circuitry.

[0208] According to example 1, there is provided a sys-
tem. The system may include: processor circuitry; on-chip
processor memory circuitry that includes a plurality of static
random access memory (SRAM) arrays, each of the SRAM
arrays including microcontroller circuitry; neural network
control circuitry to: receive an instruction set architecture
(ISA) that includes data representative of a multi-layer
neural network model and one or more neural network data
inputs; form serially connected bit-serial PISA circuitry
using at least a portion of the plurality of SRAM arrays,
wherein each of the SRAM arrays included in the portion of
the plurality of SRAM arrays represents a single layer of the
multi-layer neural network model; cause a transfer of the
ISA representative of each layer of the multi-layer neural
network model to the microcontroller circuitry in a respec-
tive one of the portion of the plurality of SRAM arrays;
cause a bidirectional transfer of neural network layer
weights between the PISA memory circuitry and the portion
of the plurality of SRAM arrays included in the serially
connected bit-serial PISA circuitry; cause a transfer of the
neural network input data from the PISA memory circuitry
to the bit-serial PISA circuitry; and cause a transfer of output
data from the serially connected bit-serial PISA circuitry to
the PISA memory circuitry.

[0209] Example 2 may include elements of example 1 and
the system may further include: input/output (1/0) interface
circuitry to receive, in a high-level language, the data
representative of the multi-layer neural network model and
the one or more neural network data inputs, wherein the
processor circuitry includes compiler circuitry to compile
the received data representative of the multi-layer neural
network model and the one or more neural network data
inputs from the high-level language to the ISA.

[0210] Example 3 may include elements of any of
examples 1 or 2 where the compiler circuitry may further
include: high level compiler circuitry to compile the
received data representative of the multi-layer neural net-
work model and the one or more neural network data inputs
from the high-level language to an intermediate domain
specific language (DSL); and low-level compiler circuitry to
compile the received data representative of the multi-layer
neural network model and the one or more neural network
data inputs from the DSL to the ISA.

[0211] Example 4 may include elements of any of
examples 1 through 3 where each of the plurality of SRAM
arrays comprises a SRAM array having integer compute
capability (C-SRAM) using bit-serial, in-memory, process-
ing.

[0212] Example 5 may include elements of any of
examples 1 through 4 where the on-chip processor memory
circuitry may include last level cache (LLC) memory cir-
cuitry.

[0213] Example 6 may include elements of any of
examples 1 through 5 where the system may include a
multi-chip module that includes the processor circuitry, the
on-chip processor memory circuitry, and the neural network
control circuitry.

[0214] Example 7 may include elements of any of
examples 1 through 6 where the system may include a
central processing unit that includes the processor circuitry
and the on-chip processor memory circuitry.
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[0215] According to example 8, there is provided an
in-memory neural network processing method. The method
may include: receiving, by neural network control circuitry
coupled to processor circuitry, an instruction set architecture
(ISA) that includes a multi-layer neural network model and
neural network input data; serially coupling, by the neural
network control circuitry, a plurality of static random access
memory (SRAM) arrays included in on-chip processor
memory circuitry to provide pipelined SRAM architecture
(bit-serial PISA) circuitry, each of the plurality of SRAM
arrays representing a single layer of the multi-layer neural
network model and including respective microcontroller
circuitry; causing, by the neural network control circuitry, a
transfer of the ISA representative of each layer of the
multi-layer neural network model to the microcontroller
circuitry in a respective one of the plurality of SRAM arrays;
causing, by the neural network control circuitry, a bidirec-
tional transfer of neural network layer weights between each
of'the serially connected SRAM arrays forming the bit-serial
PISA circuitry and PISA memory circuitry coupled to the
bit-serial PISA circuitry via one or more high-bandwidth
connections; causing, by the neural network control cir-
cuitry, a transfer of the ISA representative of the neural
network input data from the PISA memory circuitry to the
bit-serial PISA circuitry; and causing, by the neural network
control circuitry, the bit-serial PISA circuitry to perform
bit-serial, in-memory, neural network processing using the
plurality of SRAM arrays; and causing, by the neural
network control circuitry, a transfer of neural network output
data from the bit-serial PISA circuitry to the PISA memory
circuitry.

[0216] Example 9 may include elements of example 8 and
the method may additionally include: causing, by the neural
network control circuitry, a direct memory access (DMA)
transfer of the neural network output data from the PISA
memory circuitry to system memory circuitry.

[0217] Example 10 may include elements of any of
examples 8 or 9, and the method may further include:
receiving, at input/output interface circuitry coupled to the
processor circuitry, the data representative of the multi-layer
neural network model and the neural network input values in
a high-level language; and compiling, by compiler circuitry
disposed at least partially in the processor circuitry, the
received data representative of the multi-layer neural net-
work model and the neural network input values from the
high-level language to the ISA.

[0218] Example 11 may include elements of any of
examples 8 through 10 where compiling the received data
representative of the multi-layer neural network model and
the neural network input values from the high-level lan-
guage to the ISA may include: compiling, by high-level
compiler circuitry disposed at least partially in the processor
circuitry, the received data representative of the multi-layer
neural network model and the neural network input values
from the high-level language to an intermediate domain
specific language (DSL); and compiling, by low-level com-
piler circuitry disposed at least partially in the processor
circuitry, the received data representative of the multi-layer
neural network model and the neural network input values
from the DSL to the ISA.

[0219] Example 12 may include elements of any of
examples 8 through 11 where serially coupling a plurality of
static random access memory (SRAM) arrays included in
on-chip processor memory circuitry to provide pipelined
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SRAM architecture (bit-serial PISA) circuitry further may
include: serially coupling, by the neural network control
circuitry, a plurality of static random access memory
(SRAM) arrays included in last level cache (LLC) circuitry
coupled to the processor circuitry to provide the bit-serial
PISA circuitry.

[0220] According to example 13, there is provided a
non-transitory machine-readable storage medium having
instructions that, when executed by neural network control
circuitry, may cause the neural network control circuitry to:
receive, from communicably coupled processor circuitry, an
instruction set architecture (ISA) that includes a multi-layer
neural network model and neural network input data; seri-
ally couple a plurality of static random access memory
(SRAM) arrays included in on-chip processor memory cir-
cuitry to provide pipelined SRAM architecture (bit-serial
PISA) circuitry, each of the plurality of SRAM arrays
representing a single layer of the multi-layer neural network
model and including respective microcontroller circuitry;
cause a transfer of the ISA representative of each layer of the
multi-layer neural network model to the microcontroller
circuitry in a respective one of the plurality of SRAM arrays;
cause a bidirectional transfer of neural network layer
weights between each of the serially connected SRAM
arrays forming the bit-serial PISA circuitry and PISA
memory circuitry coupled to the bit-serial PISA circuitry via
one or more high-bandwidth connections; cause a transfer of
the ISA representative of the neural network input data from
the PISA memory circuitry to the bit-serial PISA circuitry;
cause the bit-serial PISA circuitry to perform bit-serial,
in-memory, neural network processing using the plurality of
SRAM arrays; and cause a transfer of neural network output
data from the bit-serial PISA circuitry to the PISA memory
circuitry.

[0221] Example 14 may include elements of example 13
where the instructions may further cause the neural network
control circuitry to: cause direct memory access (DMA)
control circuitry to DMA transfer the neural network output
data from the PISA memory circuitry to system memory
circuitry.

[0222] Example 15 may include elements of any of
examples 13 or 14 where the instructions that cause the
neural network control circuitry to serially couple a plurality
of static random access memory (SRAM) arrays included in
on-chip processor memory circuitry to provide pipelined
SRAM architecture (bit-serial PISA) circuitry may further
cause the neural network control circuitry to: serially couple
a plurality of static random access memory (SRAM) arrays
included in last level cache (LLC) circuitry coupled to the
processor circuitry to provide the bit-serial PISA circuitry.
[0223] According to example 16, there is provided an
in-memory neural network processing system. The system
may include: means for receiving an instruction set archi-
tecture (ISA) from processor circuitry, the ISA including a
multi-layer neural network model and neural network input
data; means for serially coupling a plurality of static random
access memory (SRAM) arrays included in on-chip proces-
sor memory circuitry to provide pipelined SRAM architec-
ture (bit-serial PISA) circuitry, each of the plurality of
SRAM arrays representing a single layer of the multi-layer
neural network model and including respective microcon-
troller circuitry; means for causing a transfer of the ISA
representative of each layer of the multi-layer neural net-
work model to the microcontroller circuitry in a respective
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one of the plurality of SRAM arrays; means for causing a
bidirectional transfer of neural network layer weights
between each of the serially connected SRAM arrays form-
ing the bit-serial PISA circuitry and PISA memory circuitry
coupled to the bit-serial PISA circuitry via one or more
high-bandwidth connections; means for causing a transfer of
the ISA representative of the neural network input data from
the PISA memory circuitry to the bit-serial PISA circuitry;
means for causing the bit-serial PISA circuitry to perform
bit-serial, in-memory, neural network processing using the
plurality of SRAM arrays; and means for causing a transfer
of neural network output data from the bit-serial PISA
circuitry to the PISA memory circuitry.

[0224] Example 17 may include elements of example 16,
and the system may further include: means for causing a
direct memory access (DMA) transfer of the neural network
output data from the PISA memory circuitry to system
memory circuitry.

[0225] Example 18 may include elements of any of
examples 16 or 17, and the system may additionally include:
means for receiving the data representative of the multi-
layer neural network model and the neural network input
values in a high-level language; and means for compiling the
received data representative of the multi-layer neural net-
work model and the neural network input values from the
high-level language to the ISA.

[0226] Example 19 may include elements of any of
examples 16 through 18 where the means for compiling the
received data representative of the multi-layer neural net-
work model and the neural network input values from the
high-level language to the ISA may include: means for
compiling the received data representative of the multi-layer
neural network model and the neural network input values
from the high-level language to an intermediate domain
specific language (DSL); and means for compiling the
received data representative of the multi-layer neural net-
work model and the neural network input values from the
DSL to the ISA.

[0227] Example 20 may include elements of any of
examples 16 through 19 where the means for serially
coupling a plurality of static random access memory
(SRAM) arrays included in on-chip processor memory cir-
cuitry to provide pipelined SRAM architecture (bit-serial
PISA) circuitry further may include: means for serially
coupling a plurality of static random access memory
(SRAM) arrays included in last level cache (LLC) circuitry
coupled to the processor circuitry to provide the bit-serial
PISA circuitry.

[0228] According to example 21, there is provided an
electronic device. The electronic device may include: a
circuit board; processor circuitry coupled to the circuit
board; on-chip processor memory circuitry that includes a
plurality of static random access memory (SRAM) arrays,
each of the SRAM arrays including microcontroller cir-
cuitry; pipelined SRAM architecture (bit-serial PISA)
memory circuitry coupled to the on-chip processor memory
circuitry via one or more high-bandwidth connections; sys-
tem memory; direct memory access control circuitry; and
neural network control circuitry to: receive an instruction set
architecture (ISA) that includes data representative of a
multi-layer neural network model and one or more neural
network data inputs; form serially connected bit-serial PISA
circuitry using at least a portion of the plurality of SRAM
arrays, wherein each of the SRAM arrays included in the
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portion of the plurality of SRAM arrays represents a single
layer of the multi-layer neural network model; cause a
transfer of the ISA representative of each layer of the
multi-layer neural network model to the microcontroller
circuitry in a respective one of the portion of the plurality of
SRAM arrays; cause a bidirectional transfer of neural net-
work layer weights between the PISA memory circuitry and
the portion of the plurality of SRAM arrays included in the
serially connected bit-serial PISA circuitry via the high-
bandwidth connection; cause a transfer of the neural net-
work input data from the PISA memory circuitry to the
bit-serial PISA circuitry; and cause a transfer of output data
from the serially connected bit-serial PISA circuitry to the
PISA memory circuitry.

[0229] Example 22 may include elements of example 21,
and the electronic device may include: input/output (/O)
interface circuitry to receive, in a high-level language, the
data representative of the multi-layer neural network model
and the one or more neural network data inputs, wherein the
processor circuitry includes compiler circuitry to compile
the received data representative of the multi-layer neural
network model and the one or more neural network data
inputs from the high-level language to the ISA.

[0230] Example 23 may include elements of any of
examples 21 or 22 where the compiler circuitry may include:
high level compiler circuitry to compile the received data
representative of the multi-layer neural network model and
the one or more neural network data inputs from the high-
level language to an intermediate domain specific language
(DSL); and low-level compiler circuitry to compile the
received data representative of the multi-layer neural net-
work model and the one or more neural network data inputs
from the DSL to the ISA.

[0231] Example 24 may include elements of any of
examples 21 through 23 where each of the plurality of
SRAM arrays may include a SRAM array having integer
compute capability (C-SRAM) using bit-serial, in-memory,
processing.

[0232] Example 25 may include elements of any of
examples 21 through 24 where the on-chip processor
memory circuitry may include last level cache (LLC)
memory.

[0233] Example 26 may include elements of any of
examples 21 through 25 where the system may include a
multi-chip module that includes the processor circuitry, the
on-chip processor memory circuitry, and the neural network
control circuitry.

[0234] Example 27 may include elements of any of
examples 21 through 26 where the system may include a
central processing unit that includes the processor circuitry
and the on-chip processor memory circuitry.

[0235] According to example 28, there is provided a
system for implementing a neural network using in-memory,
bit-serial, mathematical operations performed by a pipelined
SRAM architecture (bit-serial PISA) circuitry disposed in
on-chip processor memory circuitry, the system being
arranged to perform the method of any of examples 8
through 12.

[0236] According to example 29, there is provided a
chipset arranged to perform the method of any of examples
8 through 12.

[0237] According to example 30, there is provided at least
one non-transitory machine readable medium comprising a
plurality of instructions that, in response to be being
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executed on a processor-based device, cause the computing
device to carry out the method according to any of examples
8 through 12.

[0238] According to example 31, there is provided a
device configured for implementing a neural network using
in-memory, bit-serial, mathematical operations performed
by a pipelined SRAM architecture (bit-serial PISA) circuitry
disposed in on-chip processor memory circuitry, the device
being arranged to perform the method of any of the
examples 8 through 12.

[0239] The terms and expressions which have been
employed herein are used as terms of description and not of
limitation, and there is no intention, in the use of such terms
and expressions, of excluding any equivalents of the features
shown and described (or portions thereof), and it is recog-
nized that various modifications are possible within the
scope of the claims. Accordingly, the claims are intended to
cover all such equivalents. Various features, aspects, and
embodiments have been described herein. The features,
aspects, and embodiments are susceptible to combination
with one another as well as to variation and modification, as
will be understood by those having skill in the art. The
present disclosure should, therefore, be considered to
encompass such combinations, variations, and modifica-
tions.

[0240] As described herein, various embodiments may be
implemented using hardware elements, software elements,
or any combination thereof. Examples of hardware elements
may include processors, microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, application specific inte-
grated circuits (ASIC), programmable logic devices (PLD),
digital signal processors (DSP), field programmable gate
array (FPGA), logic gates, registers, semiconductor device,
chips, microchips, chip sets, and so forth.

[0241] Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment.
Thus, appearances of the phrases “in one embodiment” or
“in an embodiment” in various places throughout this speci-
fication are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments.

What is claimed:
1. A system comprising:
processor circuitry;
on-chip processor memory circuitry that includes a plu-
rality of static random access memory (SRAM) arrays,
each of the SRAM arrays including microcontroller
circuitry; and
neural network control circuitry to:
receive instructions that include data representative of
a multi-layer neural network model and one or more
neural network data inputs;
form serially coupled, bit-serial, pipelined static ran-
dom access memory architecture (bit-serial PISA)
circuitry using at least a portion of the plurality of
SRAM arrays, each of the SRAM arrays included in
the portion of the plurality of SRAM arrays to
determine a single layer of the multi-layer neural
network model;
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cause a transfer of one or more subsets of the instruc-
tions, each of the one or more subsets representative
of a layer of the multi-layer neural network model, to
the microcontroller circuitry in a respective one of
the portion of the plurality of SRAM arrays;

cause, via one or more high-bandwidth connections, a
bidirectional transfer of neural network layer
weights between the PISA memory circuitry and the
portion of the plurality of SRAM arrays included in
the serially connected bit-serial PISA circuitry;

cause a transfer of the neural network input data from
the PISA memory circuitry to the bit-serial PISA
circuitry; and

cause a transfer of output data from the serially con-
nected bit-serial PISA circuitry to the PISA memory
circuitry.

2. The system of claim 1 wherein each of the plurality of
SRAM arrays comprises a SRAM array having integer
compute capability (C-SRAM) using bit-serial, in-memory,
processing.

3. The system of claim 1 wherein the on-chip processor
memory circuitry comprises last level cache (LL.C) memory.

4. The system of claim 1 wherein the system comprises a
multi-chip module that includes the processor circuitry, the
on-chip processor memory circuitry, and the neural network
control circuitry.

5. The system of claim 1 wherein the system comprises a
central processing unit that includes the processor circuitry
and the on-chip processor memory circuitry.

6. A non-transitory machine-readable storage medium
having instructions that, when executed by neural network
control circuitry, cause the neural network control circuitry
to:

receive, from communicably coupled processor circuitry,

an instruction set architecture (ISA) that includes a
multi-layer neural network model and neural network
input data;
serially couple a plurality of static random access memory
(SRAM) arrays included in on-chip processor memory
circuitry to provide bit-serial pipelined SRAM archi-
tecture (bit-serial PISA) circuitry, each of the plurality
of SRAM arrays to determine a single layer of the
multi-layer neural network model and including
respective microcontroller circuitry;
cause a transfer of the ISA representative of each layer of
the multi-layer neural network model to the microcon-
troller circuitry in a respective one of the plurality of
SRAM arrays;

cause a bidirectional transfer of neural network layer
weights between each of the serially connected SRAM
arrays forming the bit-serial PISA circuitry and PISA
memory circuitry coupled to the bit-serial PISA cir-
cuitry via one or more high-bandwidth connections;

cause a transfer of the ISA representative of the neural
network input data from the PISA memory circuitry to
the bit-serial PISA circuitry;

cause the bit-serial PISA circuitry to perform bit-serial,

in-memory, neural network processing using the plu-
rality of SRAM arrays; and

cause a transfer of neural network output data from the

bit-serial PISA circuitry to the PISA memory circuitry.

7. The non-transitory machine-readable storage medium
of claim 11 wherein the instructions further cause the neural
network control circuitry to:
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cause direct memory access (DMA) control circuitry to
DMA transfer the neural network output data from the
PISA memory circuitry to system memory circuitry.

8. The non-transitory machine-readable storage medium
of claim 11 wherein the instructions that cause the neural
network control circuitry to serially couple a plurality of
static random access memory (SRAM) arrays included in
on-chip processor memory circuitry to provide pipelined
SRAM architecture (bit-serial PISA) circuitry further cause
the neural network control circuitry to:

serially couple a plurality of static random access memory

(SRAM) arrays included in last level cache (LLC)
circuitry coupled to the processor circuitry to provide
the bit-serial PISA circuitry.

9. An in-memory neural network processing system,
comprising:

means for receiving an instruction set architecture (ISA)

from processor circuitry, the ISA including a multi-
layer neural network model and neural network input
data;
means for serially coupling a plurality of static random
access memory (SRAM) arrays included in on-chip
processor memory circuitry to provide bit-serial pipe-
lined SRAM architecture (bit-serial PISA) circuitry,
each of the plurality of SRAM arrays representing a
single layer of the multi-layer neural network model
and including respective microcontroller circuitry;

means for causing a transfer of the ISA representative of
each layer of the multi-layer neural network model to
the microcontroller circuitry in a respective one of the
plurality of SRAM arrays;

means for causing a bidirectional transfer of neural net-

work layer weights between each of the serially con-
nected SRAM arrays forming the bit-serial PISA cir-
cuitry and PISA memory circuitry coupled to the bit-
serial PISA circuitry via one or more high-bandwidth
connections;

means for causing a transfer of the ISA representative of

the neural network input data from the PISA memory
circuitry to the bit-serial PISA circuitry;

means for causing the bit-serial PISA circuitry to perform

bit-serial, in-memory, neural network processing using
the plurality of SRAM arrays; and

means for causing a transfer of neural network output data

from the bit-serial PISA circuitry to the PISA memory
circuitry.

10. The system of claim 9, further comprising:

means for causing a direct memory access (DMA) trans-

fer of the neural network output data from the PISA
memory circuitry to system memory circuitry.

11. The system of claim 10, further comprising:

means for receiving the data representative of the multi-

layer neural network model and the neural network
input values in a high-level language; and

means for compiling the received data representative of

the multi-layer neural network model and the neural
network input values from the high-level language to
the ISA.

12. The system of claim 11 wherein the means for
compiling the received data representative of the multi-layer
neural network model and the neural network input values
from the high-level language to the ISA comprises:

means for compiling the received data representative of

the multi-layer neural network model and the neural
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network input values from the high-level language to
an intermediate domain specific language (DSL); and
means for compiling the received data representative of
the multi-layer neural network model and the neural
network input values from the DSL to the ISA.

13. The system of claim 9 wherein the means for serially
coupling a plurality of static random access memory
(SRAM) arrays included in on-chip processor memory cir-
cuitry to provide pipelined SRAM architecture (bit-serial
PISA) circuitry further comprises:

means for serially coupling a plurality of static random

access memory (SRAM) arrays included in last level
cache (LLC) circuitry coupled to the processor circuitry
to provide the bit-serial PISA circuitry.

14. An electronic device, comprising:

a circuit board;

processor circuitry coupled to the circuit board;

on-chip processor memory circuitry that includes a plu-

rality of static random access memory (SRAM) arrays,
each of the SRAM arrays including microcontroller
circuitry;

system memory circuitry;

direct memory access control circuitry; and

neural network control circuitry to:

receive instructions that include data representative of
a multi-layer neural network model and one or more
neural network data inputs;

form serially coupled, bit-serial, pipelined static ran-
dom access memory architecture (bit-serial PISA)
circuitry using at least a portion of the plurality of
SRAM arrays, each of the SRAM arrays included in
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the portion of the plurality of SRAM arrays to
determine a single layer of the multi-layer neural
network model;

cause a transfer of one or more subsets of the instruc-
tions, each of the one or more subsets representative
of'a layer of the multi-layer neural network model, to
the microcontroller circuitry in a respective one of
the portion of the plurality of SRAM arrays;

cause, via one or more high-bandwidth connections, a
bidirectional transfer of neural network layer
weights between the PISA memory circuitry and the
portion of the plurality of SRAM arrays included in
the serially connected bit-serial PISA circuitry;

cause a transfer of the neural network input data from
the PISA memory circuitry to the bit-serial PISA
circuitry; and

cause a transfer of output data from the serially con-
nected bit-serial PISA circuitry to the PISA memory
circuitry.

15. The electronic device of claim 14 wherein each of the
plurality of SRAM arrays comprises a SRAM array having
integer compute capability (C-SRAM) using bit-serial, in-
memory, processing.

16. The electronic device of claim 14 wherein the on-chip
processor memory circuitry comprises last level cache
(LLC) memory.

17. The electronic device of claim 14 wherein the system
comprises a multi-chip module that includes the processor
circuitry, the on-chip processor memory circuitry, and the
neural network control circuitry.

18. The electronic device of claim 14 wherein the system
comprises a central processing unit that includes the pro-
cessor circuitry and the on-chip processor memory circuitry.
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