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The functionality of a cross-shaped Spin Torque Majority Gate (STMG) is primarily limited by the

pinning of a domain wall (DW) at the center of the device. Here, an analytical model is built to cal-

culate the conditions for such a pinning and to deduce the operating range. The assumptions of the

model and the conclusions are validated by micromagnetic simulations. The total magnetic energy

of the DW state is derived. By minimizing this energy with respect to two degrees of freedom, the

DW stability condition is obtained. We find that the lateral length of the STMG is the critical

dimension: it must be smaller than about five times the DW width. This result is confirmed by

micromagnetic simulations with a high accuracy. In process, we solved a more fundamental prob-

lem: the macrospin limit of a finite ferromagnet containing one pinning site. We found the correc-

tion of the usual DW width expression due to finite length of wires. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974472]

I. INTRODUCTION

Scaling of both speed and density of Complementary

Metal-Oxide Semiconductor (CMOS) field-effect transistor

circuits to smaller characteristic sizes is becoming more and

more challenging due to fundamental limits.1 Among the

possible complementary “beyond-CMOS” device options, a

wide range of proposals use the properties of the electron

spin or equivalently, magnetization, enabling the non-

volatile logic. For example, in Nano-Magnetic Logic,2–5

information is encoded in the magnetization and propagates

between nanoscale magnets via dipolar coupling. Logic gates

can also be built with Magnetic Tunnel Junctions6,7 (MTJs).

In a more disruptive approach, called Domain Wall (DW)

logic,8–11 the logic state propagates in one continuous ferro-

magnetic layer. These concepts should be more energy-

efficient as they avoid multiple conversions between charge

and spin computational variables.

One of the advantages of beyond-CMOS logic is that it

does not have to be restricted to the standard NAND, NOR,

and NOT gates. Instead, three-input majority gates3,4,12–14

and NOT gates can be used as the building blocks of any

arithmetic function.15,16 Digital circuits would greatly benefit

from this new computational paradigm as they would require

fewer components and could be more compact.16,17

A three-input majority gate driven by Spin Transfer

Torque18,19 (STT) has been proposed in Ref. 13. It consists

of a cross-shaped free layer shared between four Magnetic

Tunnel Junctions (see Fig. 1). Variations of the Spin Torque

Majority Gate (STMG) shape have been investigated,20 but

the “simple cross” remained the most reliable.

The binary information (“0” or “1”) in the gate is repre-

sented by the magnetization orientation (up or down) in the

free layer. Three MTJs write the input states via STT in a

current perpendicular to plane configuration. The forth MTJ

reads the output state via tunnel magnetoresistance. In prin-

ciple, there is no in-plane current. The magnetic domains are

mainly driven by the exchange interaction. As a conse-

quence, the STMG works only at a very small size. The oper-

ating range has been extensively studied by micromagnetic

simulations.21 It was found that the device is limited by a

main failure state consisting of a DW pinned at the center of

the cross. Functionality is ensured if the parameter of the

DW width,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
> 1:21a (where Aex is the exchange

constant, Keff is the effective anisotropy, and a is the arm

width). Thus, it seems that the ratio of the DW width over

the arm width a determines the working condition. However,

that study did not include variations of the aspect ratio k,

defined as the arm length over the arm width a (see Fig. 2). k
was kept constant, equal to 7. Therefore, it is still unclear

whether the limiting dimension is the arm width a or the arm

length ka.

According to Ref. 21, the failure occurs when the DW

state at the center of the cross is an energy minimum. Thus,

the device operates properly when the DW state in the center

is a saddle point of the energy landscape. In this article, we

derive analytically the magnetic energy of a generalized

domain wall state (Section II) and compare it against numeri-

cal simulations (Section III). Then, we seek the stationary

points of the energy and deduce the DW stability conditions

leading to failure of the STMG (Section IV). The operating

condition is obtained for any aspect ratio k. These results

allow to draw conclusions regarding the optimal aspect ratio

of an STMG. Moreover, a fundamental problem is addressed

through our analytical model: the macrospin limit of a finite

ferromagnet containing one main pinning site. Operating

conditions for a typical stack are given in Section V, and the

limitations of the model are described in Section VI.a)Also at Departement elektrotechniek (ESAT), KU Leuven, Leuven, Belgium.
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II. MODEL ASSUMPTIONS

A. Equivalent 1D model

The main failure state described in Ref. 21 is in fact

degenerate. Depending on the two neighboring branches that

are switched, the DW can be along one of the two diagonals

at the center of the cross, and depending on the switching

direction, there are also two possible domain orientations.

This is a total of four energetically equivalent configurations.

In the following, we assume without the loss of generality

that the upper and left arms are in the UP state, while the

lower and right arms are pointing DOWN (see Figure 2).

The coordinate axes are rotated by 45�, as shown in Fig.

2(a), such that the DW lies in the yz-plane. mz is positive

when x< 0 and negative when x> 0.

DWs are commonly modeled in a wire infinitely extend-

ing in one dimension. Here, it cannot be considered as infinite

since the size determines the failure or success. Therefore, the

analytical expression of the energy must contain finite integral

bounds.

According to the simulations performed in Ref. 21, mag-

netization variations with respect to y and z seem negligible

in the failure state. As explained in the supplementary mate-

rial, the energy density �totðx; y; zÞ can then be expressed as a

function of hðxÞ where h is the out-of-plane magnetization

angle.

For easier calculation of the energy integral, we modify

the shape to have beveled the edges as illustrated in Fig. 2(a).

Thus, the boundaries are located at fixed x and have fixed m

values.

The total energy of this beveled cross (Fig. 2(a)) proves

to be the same as the energy of a rectangle with two notches

in the middle (Fig. 2(b)) (see supplementary material). This

equivalence is useful to understand the possible equilibrium

states. If a DW is energetically stable, its preferred position is

between the two notches (i.e., at the center of the cross),

which causes a failure. Therefore, the STMG is functional if a

DW is unstable in the free layer, in other words, if the only

equilibrium states are uniform (or “macrospin”). Thus, finding

the operating range of the STMG amounts to answering a

more fundamental question: what is the macrospin limit of a

bounded ferromagnetic body containing one main pinning

site? We refer here to the static macrospin limit. Dynamically,

the reversal can be non-uniform, while the only stable states

are macrospin.

The sizes of the two equivalent shapes are related by

L ¼ kaffiffiffi
2
p ; d ¼

ffiffiffi
2
p

a: (1)

The total energy can be expressed via the total magnetic

energy density �tot

Etot ¼
ðL=2

�L=2

wðxÞ t �totðhðxÞÞ dx; (2)

where w(x) is the width of the equivalent shape shown in

Fig. 2(b). It is minimum at the center of the notch (w¼ d)

and maximum outside the notch (w ¼ 2d).

B. Domain wall profile

To calculate the total energy, the angle of magnetiza-

tion, hðxÞ, must be determined. In principle, it can be found

by solving the Euler-Lagrange differential equation. Bruno22

has solved it for a DW in a constriction, assuming an infinite

wire. As mentioned previously, this assumption does not

hold here.

Instead of solving the Euler-Lagrange equation, another

approach23,24 relies on finding a suitable analytic expression

of the magnetization distribution as a function of one or

more variable parameters. Then, the equilibrium state is

obtained by minimizing the total energy with respect to these

parameters.

The DW can either be Bloch (magnetization in the DW

plane) or N�eel (magnetization orthogonal to the DW plane).

According to our micromagnetic simulations, they both have

approximately the same energy. This is due to the specific cross

shape that induces surface and volume magnetostatic charges

for both types of wall. For convenience, the magnetization

distribution of a Bloch configuration is considered here.

In the case of an infinite wire without constriction, the

profile of a Bloch DW is

FIG. 1. Schematic representation of the spin-torque majority gate in the

main failure state.

FIG. 2. Distribution of magnetization in a STMG and an equivalent ferro-

magnet. Red: magnetization up. Blue: magnetization down. Assuming bev-

eled edges and a magnetization that varies only along x, the cross (a) is

energetically equivalent to a rectangle with two notches (b).
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h xð Þ ¼ 2 arctan exp
x� x0

D

� �� �

¼ arccos tanh
x0 � x

D

� �� �
; (3)

where D is proportional to the wall width and x0 is the posi-

tion of the wall. Even though this expression was derived for

a shape quite different from the cross, it fits very well with

the DW profiles of our simulations,25 as shown in Fig. 3. In

this figure, x0 ¼ 0 and D is a fitting parameter. The quality of

these fits gives enough confidence to use Equation (3) as an

ansatz. The energy of the DW at equilibrium can then be cal-

culated by minimization with respect to D and x0, similarly

to the methods used in Refs. 23 and 24.

III. DOMAIN WALL ENERGY: ANALYTICAL vs.
NUMERICAL

Substituting Eq. (3) in Eq. (2) and using the expressions

of the energy densities given in the supplementary material,

one can calculate the three parts of the energy as a function

of the geometrical parameters, the material parameters Aex,

Ks, and Ms, and the two degrees of freedom x0 and D. The

analytical expression of the total energy is then obtained

Etot ¼ Eex þ Eanis þ Edip; (4)

where

Eex ¼ 2t Aex f; (5a)

Eanis ¼ 2t
Ks

t
D2 f; (5b)

Edip ¼ 2t � 1

2
l0M2

s Nzz � Nxxð Þ
� �

D2 f

þ 2t
1

2
l0M2

s Nzz dL� d2

4

� �
; (5c)

where f is defined as

f ¼ 3d

D
þ ln

1þ e
2x0
D

e
d
D þ e

2x0
D

 !
þ ln

1þ e�
2x0
D

e
d
D þ e�

2x0
D

 !

� 2d

D
e

2x0
D

e
L
D þ e

2x0
D

þ e�
2x0
D

e
L
D þ e�

2x0
D

 !
: (6)

When the DW is located at the center of the cross (x0 ¼ 0),

the exchange energy is

Eex ¼ 2t Aex f0; (7)

where f0 is f in x0 ¼ 0 (see Eq. (6)). Namely,

f0 ¼
3d

D
þ 2 ln

2

e
d
D þ 1

� �
� 4d

D
1

e
L
D þ 1

: (8)

Since the anisotropy energy Eanis and the magnetostatic

energy Edip have similar expressions, one can define the

effective anisotropy energy Eef f ¼ Eanis þ Edip which reads

Eef f ¼ 2t Kef f D
2 f0 þ 2t

1

2
l0M2

s Nzz dL� d2

4

� �
: (9)

If D is known, Etot can now be calculated analytically

for a DW along the central diagonal (x0 ¼ 0). In order to val-

idate the model, micromagnetic simulations are performed in

the cross-shaped STMG, varying Aex within a large range

(from 2 to 80 pJ/m). When the equilibrium state is a DW, the

fitting parameter D is extracted. In Fig. 4, the energies com-

puted by the micromagnetic solver are plotted as a function

of the extracted D. These simulation points are compared to

the analytical results for the same range of D values. The

agreement between the simulations and the analytical model

is very good. The slight discrepancy observed at large D is

mostly due to an overestimate of the exchange energy.

FIG. 3. Magnetization angle h as a function of the position along the cross,

as shown in the inset. The points are obtained from micromagnetic simula-

tions. They are fitted with Eq. (3) (solid lines). The simulations were per-

formed for a cross of a¼ 10 nm width, L¼ 70 nm length, t¼ 1.2 nm

thickness, Ks ¼ 1 mJ=m2 surface anisotropy. The red curve (Ms

¼ 1150 kA=m) is the limit case for DW stability: at Ms ¼ 1200 kA=m, the

equilibrium state becomes uniform out-of-plane. As illustrated by the inset,

the profile is not extracted perpendicularly to the DW, but at a 45� angle.

The x coordinate (transverse to the wall) is shown on the top axis.

FIG. 4. Exchange energy Eex, anisotropy energy Eanis, dipolar energy Edip,

and total energy Etot as a function of D. Dots: micromagnetic simulations for

Aex ¼ 2� 80 pJ=m; Ms ¼ 250; 500; 1000 kA=m; a ¼ 20 nm; Ks ¼ 1 mJ=m2.

Lines: energies predicted by the analytical model.
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IV. OPERATING CONDITIONS

A. Stability conditions of the DW

By using the ansatz of Eq. (3), the energy landscape is

reduced to only two degrees of freedom: x0 and D. Since this

model gives a realistic description of the DW at equilibrium,

the true energy landscape can be approximated by Eqs.

(4)–(6) in the vicinity of this equilibrium state.

The STMG works when the central DW is unstable

and Keff> 0. Therefore, we simply need to derive the DW

stability condition at x0 ¼ 0 to deduce the operating

conditions.

The DW is stable if it is an energy minimum, i.e., if it is a

stationary point of Etot and the eigenvalues of the Hessian

matrix are positive. In x0 ¼ 0, the Hessian matrix Hðx0; DÞ is

H 0; Dð Þ ¼

@2Etot

@x2
0

����
0;Dð Þ

0

0
@2Etot

@D2

����
0;Dð Þ

0
BBBB@

1
CCCCA: (10)

Therefore, the central DW is stable if there exists Deq such

that

(i)
@Etot

@x0

����
ð0;DeqÞ

¼ 0;

(ii)
@Etot

@D

����
ð0;DeqÞ

¼ 0;

(iii)
@2Etot

@x2
0

����
ð0;DeqÞ

> 0;

(iv)
@2Etot

@D2

����
ð0;DeqÞ

> 0:

Deq is the DW parameter at equilibrium. The condition (i)

can be easily proven by differentiating Etot (Eq. (4)) with

respect to x0. This is obvious, due to the symmetry of the

cross. The condition (iv) is also trivial: if Deq exists,

@2Etot

@D2 jð0;DeqÞ is always positive. Sections IV B and IV C are

dedicated to solving conditions (ii) and (iii). These solutions

will be then gathered to obtain the operating condition.

B. Solution of condition (iii)

The second derivative of the total energy with respect to

x0 reads

@2Etot

@x2
0

����
x0¼0

¼ 4 t
Aex

D2
þ Kef f

� �
j; (11)

where

j ¼ tanh2 d

2D

� �
� 2d

D

tanh
L

2D

� �

cosh2 L

2D

� � : (12)

In the out-of-plane case (i.e., Keff> 0), the sign of @2Etot

@x2
0

jx0¼0 is

given by the sign of j. The parameter j determines the curva-

ture of the energy well as a function of the device dimensions.

When D� d (and thus D� L), the curvature is maximum

(j! 1). When D� d, the curvature becomes negative, mak-

ing the DW unstable. Since Eqs. (11) and (12) hold for any D
value, they also hold for Deq, addressing thus the condition (iii).

Unfortunately, in Eq. (12), it does not seem possible to

separate D from the geometrical parameters d and L.

However, substituting Eq. (1) in Eq. (12), j can be written as

a function of only two parameters: D=a and the aspect ratio

k. We will see in Sec. IV C why this expression is particu-

larly useful. In Fig. 5, j is plotted (red curve) as a function

of Deq=a for three different aspect ratios k. The root Dmax=a,

is the upper bound for DW stability. As illustrated by the

insets at the bottom of Fig. 5, if Deq < Dmax, the curvature of

the energy landscape j in x¼ x0 is positive, which means

that the DW state is a local energy minimum, while Deq >
Dmax leads to a negative curvature preventing the DW to be

pinned at the center of the cross. The value of Dmax, calcu-

lated numerically, is given in Table I. Dmax can be

FIG. 5. DW stability conditions for the aspect ratios (a) k¼ 3 (short cross), (b) k¼ 5 (normal cross), and (c) k¼ 7 (long cross). In red: j (y-axis on the right-

hand side) as a function of Deq=a. In black:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
=a (y-axis on the left-hand side) as a function of Deq=a. The DW is stable if j > 0. The corresponding

value of Deq=a is 1.07 for the short cross, 1.41 for the normal cross, and 1.73 for the long cross. This limit value is reached when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
=a is 0.95 (short

cross) or 1.27 (normal cross) or 1.57 (long cross). Successful operation is expected outside the DW stability region, i.e., above the limit value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
=a.
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equivalently expressed as a function of the total cross length

ka (last line of Table I). One can note that Dmax=ka is almost

constant. This is an interesting result that suggests that the

DW becomes unstable when it is too wide to be contained

within the total length of the cross ka. Since the STMG

works when the DW is unstable, the total length of the cross

must be as small as possible.

C. Solution of condition (ii)

The condition (iii) has been determined as a function of

Deq and the geometrical parameters k and a. At this stage,

Deq, the domain wall parameter at equilibrium is still

unknown. To determine it, the condition (ii) must be solved.

Differentiating Etot (Eq. (4)) with respect to D yields

@Etot

@D

����
x0¼0

¼ 2t Kef f D nef f �
Aex

D
nex

� �
; (13)

where

nex ¼ 3
d

D
� 2

d

D
ed=D

ed=D þ 1
� 4

d

D
1

eL=D þ 1
þ dL

D2

1

cosh2 L

2D

� � ;
(14)

nef f ¼
d

D
tanh

d

2D

� �
þ 2

d

D
tanh

L

2D

� �

� 4 ln cosh
d

2D

� �� �
� dL

D2

1

cosh2 L

2D

� � : (15)

The condition (ii), @Etot

@D jx0¼0 ¼ 0, leads to

D ¼ Deq ¼
ffiffiffiffiffiffiffiffi
Aex

Kef f

s ffiffiffiffiffiffiffiffi
nex

nef f

s
: (16)

Interestingly, the domain wall parameter Deq is not equal toffiffiffiffiffiffi
Aex

Kef f

q
, its usual expression is valid for an infinite strip. Due

to the boundaries and the pinning site, it is modified by the

correction term
ffiffiffiffiffiffi
nex

nef f

q
. However, this expression is not partic-

ularly useful as nex and neff depend both on D. To find the

solution, Eq. (16) must be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a

¼ Deq

a

ffiffiffiffiffiffiffiffi
nef f

nex

s
: (17)

Substituting Eq. (1) in Eqs. (14) and (15), nex and neff

can be expressed as functions of D=a and k. Therefore, the

term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
=a in Eq. (17) is a function of only two

parameters: Deq=a and k. This result is similar to the solution

of (iii) and can therefore be also plotted on Fig. 5 (black

curve). These plots should not be misleading; we should

keep in mind that, physically, the DW parameter at equilib-

rium Deq is determined by the other parameters.

Interestingly, Deq goes to infinity when

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a goes to

1
2

ffiffiffiffiffiffiffiffi
k3�1
6k�3

q
. As a consequence, there is no Deq when

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a

� 1
2

ffiffiffiffiffiffiffiffi
k3�1
6k�3

q
, which means that the DW is not an equilibrium

state and therefore that the STMG works in this case.

The approximation Deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=K

p
is commonly used

through the literature, despite being only valid for an infinite

wire. Here, the finite size and the pinning site lead to a differ-

ent relation. When

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a is small (typically less than about

0.8), Deq � 0:79
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
and for large values of

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a ,

Deq decreases dramatically.

D. Summary

Since (i) and (iv) are trivial, the stability condition is

obtained by combining (ii) and (iii). According to (iii), the

DW is stable when Deq < Dmax. Plugging this into Eq. (17)

for (ii) provides an upper bound for

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a , as indicated in

Fig. 5 (dashed black lines). This limit is the lower bound of

operating conditions because the STMG works only when

the DW is unstable. The lower bound is simply Keff¼ 0.

Equivalently, a maximum value of

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
ka is determined.

As shown in Table II, this ratio is almost constant with

respect to k. Thus, the operating condition of the cross-

shaped STMG is determined by two key parameters:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
and ka (total length of the cross).

In simulations,21 it was found that a cross of aspect ratio

k¼ 7 works when

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
a > 1:21. The analytical model pre-

dicts 1.27, which is a very good agreement. This slight dis-

crepancy can be explained. As mentioned in Ref. 21, if the

domain wall is an energy minimum, it is likely to be pinned at

the center. However, in the case of a very shallow minimum,

it may not go through the pinning site since it does not follow

exactly a quasi-static trajectory in the phase space. Recall that

there is no in-plane current in STMG. The domain wall is first

nucleated by the STT in the pillar areas. Then, the dynamics

is mostly governed by the exchange interaction.

Practically, the patterning of the free layer is limited by

the minimum printable width a. Since the correct operation

is ensured only below a critical value of ka, the aspect ratio k
must be as small as possible. Thus, a “short cross” is pre-

ferred. However, on such a cross, the inputs are very close to

TABLE I. Dmax is the maximum value of D before the DW becomes unsta-

ble, according to (iii). a is the arm width. ka is the length of the cross.

k¼ 5 k¼ 7 k¼ 9

Dmax ¼ 1:07 a 1:41 a 1:73 a

Dmax ¼ 0:214 ka 0:202 ka 0:192 ka

TABLE II. The operating condition expressed as a function of a (arm width)

and, equivalently, as a function of ka (total length of the cross).

k¼ 5 k¼ 7 k¼ 9ffiffiffiffiffiffiffiffi
Aex

Kef f

s
> 0:95 a 1:27 a 1:57 a

ffiffiffiffiffiffiffiffi
Aex

Kef f

s
> 0:190 ka 0:181 ka 0:174 ka
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each other. The limiting factor for nanofabrication is then

the inter-pillar distance.

V. DIMENSIONS-DEPENDENT PHASE DIAGRAM

The STMG comprises the same materials as an STT-

Magnetic Random Access Memory (MRAM) stack.

Therefore, in practice, the material parameters Aex, Ms, Ks

will be fixed. The thickness t and the length ka will be varied

to reach the operating condition.

Replacing Keff with Ks

t � 1
2
l0M2

s ðNzz � NxxÞ in the oper-

ating condition (Table II) leads to

t >
Ks

Aex

0:18 kað Þ2
þ 1

2
l0M2

s Nzz � Nxxð Þ
: (18)

Neglecting the variation of Nzz � Nxx with respect to t and

ka, we obtain a simple condition on the thickness. Fixing the

material parameters, the phase diagrams in Fig. 6 can be

plotted as a function of t and ka.

For a typical single-MgO MTJ stack, if the lateral size

ka is 50 nm, the thickness must be controlled by 3 Å (1:0 nm

< t < 1:3 nm), while for ka ¼ 100 nm, it must be controlled

by 1 Å (1:2 nm < t < 1:3 nm). If a second MgO layer is

inserted,26 the interface anisotropy is potentially doubled and

so is the allowed thickness range. Even though the model

does not take roughness into account, the phase diagrams of

Fig. 6 show that it is easier to obtain a well-functioning

device for small ka and dual-MgO. The allowed thickness

range is indeed wider.

VI. MODEL LIMITATIONS

In reality, the demagnetizing field is not uniform in the

free layer. It is larger in the center than at the ends.

Therefore, when Ks=t is small enough, the magnetization can

be in-plane near the center and out-of-plane near the edge.

This case was not observed in any of the simulations of Ref.

21 due to the small size. However, it can be observed at

a ¼ 80 nm, as shown in Fig. 7. In the range where correct

operation is expected, the center becomes in-plane while the

edge is still out-of-plane. As a consequence, the STMG can-

not work in this case.

This failure mode affects STMGs with a larger than

about 60 nm. It is worth mentioning that it should not be an

issue for future logic devices, since a must be much smaller

than 60 nm to be competitive with CMOS logic as both will

be manufactured by lithography with the smallest available

feature size. However, it may make experimental proof of

concept more challenging, since it will likely not use the

cutting-edge lithography.

VII. CONCLUSION

In conclusion, an analytical model has been built to cal-

culate the operating condition of the STMG for any aspect

ratio k. The assumptions of the model have been compared

against micromagnetic simulations and validated. Since the

DW causes a failure, the device operates reliably when the

only stable states are uniform. Thus, the STMG is functional

if it can be only macrospin at equilibrium. It has been found

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=Kef f

p
must be larger than �0:18 ka. To put it

another way, the lateral size must be smaller than about five

times the DW width. This general result is valid for any aspect

ratio k and is in a very good agreement with the micromag-

netic simulations21 for k¼ 7. In principle, Keff can be easily

decreased such that the working condition is fulfilled.

However, we have demonstrated that, for a large size, the

allowed thickness range is dramatically reduced.

Consequently, the length of the cross is the limiting factor and

must be reduced to obtain an experimental proof-of-concept.

To devise the STMG technology, key integration

obstacles should be addressed. Extreme UV lithography is

necessary to define sub-10 nm MTJs in very dense arrays.

Additionally, the etching of these minute MTJs is very chal-

lenging but a recent report27 sheds light to patterning feasi-

bility of small tunnel junctions.

SUPPLEMENTARY MATERIAL

See supplementary material for the expressions of the

energy terms and the proof of the shape equivalence.

1V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, Proc.

IEEE 91, 1934 (2003).
2R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).
3S. Breitkreutz, J. Kiermaier, I. Eichwald, X. Ju, G. Csaba, D. Schmitt-

Landsiedel, and M. Becherer, IEEE Trans. Magn. 48, 4336 (2012).
4I. Eichwald, S. Breitkreutz, G. Ziemys, G. Csaba, W. Porod, and M.

Becherer, Nanotechnology 25, 335202 (2014).
5M. T. Niemier, E. Varga, G. H. Bernstein, W. Porod, M. T. Alam, A.

Dingler, A. Orlov, and X. S. Hu, IEEE Trans. Nanotechnol. 11, 220 (2012).
6A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, Nature 425, 485 (2003).
7L. Leem and J. S. Harris, J. Appl. Phys. 105, 07D102 (2009).

FIG. 6. Phase diagrams as a function of thickness and lateral length, for a

CoFeB free layer in contact with one (a) and two (b) MgO interfaces. The

parameters are Ms ¼ 1200 kA=m; Aex ¼ 2	 10�11 J=m; Nzz � Nxx ¼ 0:85.

In (a) Ks ¼ 1 mJ=m2. In (b) Ks ¼ 2 mJ=m2.

FIG. 7. Final states of STT simulations with the “C” input combination for

different values of Ms (959–987 kA/m). The demagnetizing field increases

as Ms increases, resulting in a transition from out-of-plane to in-plane mag-

netized ferromagnet. a ¼ 80 nm; Ks=t ¼ 560 kJ=m3. Red: magnetization up.

Blue: magnetization down.

043902-6 Vaysset et al. J. Appl. Phys. 121, 043902 (2017)

ftp://ftp.aip.org/epaps/journ_appl_phys/E-JAPIAU-121-056704
http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1126/science.287.5457.1466
http://dx.doi.org/10.1109/TMAG.2012.2197184
http://dx.doi.org/10.1088/0957-4484/25/33/335202
http://dx.doi.org/10.1109/TNANO.2010.2056697
http://dx.doi.org/10.1038/nature02014
http://dx.doi.org/10.1063/1.3056141


8D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P.

Cowburn, Science 309, 1688 (2005).
9D. M. Bromberg, D. H. Morris, L. Pileggi, and J. G. Zhu, IEEE Trans.

Magn. 48, 3215 (2012).
10J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross,

IEEE Magn. Lett. 3, 3000104 (2012).
11K. Omari and T. Hayward, Phys. Rev. Appl. 2, 044001 (2014).
12A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, Science

311, 205 (2006).
13D. E. Nikonov, G. I. Bourianoff, and T. Ghani, IEEE Electron Device

Lett. 32, 1128 (2011).
14S. Klingler, P. Pirro, T. Br€acher, B. Leven, B. Hillebrands, and A. V.

Chumak, Appl. Phys. Lett. 105, 152410 (2014).
15S. B. Akers, in Symposium on Switching Circuit Theory and Logical

Design (SWCT) (IEEE, 1962), pp. 149–158.
16L. Amaru, P.-E. Gaillardon, and G. D. Micheli, IEEE Trans. Comput. Des.

Integr. Circuits Syst. 35, 806 (2016).
17L. Amaru, P.-E. Gaillardon, S. Mitra, and G. De Micheli, Proc. IEEE 103,

2168 (2015).
18L. Berger, Phys. Rev. B 54, 9353 (1996).

19J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
20D. E. Nikonov, S. Manipatruni, and I. A. Young, J. Appl. Phys. 115,

17C736 (2014).
21A. Vaysset, M. Manfrini, D. E. Nikonov, S. Manipatruni, I. A. Young, G.

Pourtois, I. P. Radu, and A. Thean, AIP Adv. 6, 065304 (2016).
22P. Bruno, Phys. Rev. Lett. 83, 2425 (1999).
23H.-D. Dietze and H. Thomas, Z. Phys. 163, 523 (1961).
24A. Aharoni, J. Appl. Phys. 37, 3271 (1966).
25The largest deviation between the fitting curves and the simulation data

is near the edges. This difference can be explained by the micromag-

netic boundary condition @m=@n ¼ 0 not being satisfied by the general

expression (3). A third parameter could be introduced in order to com-

ply with the boundary conditions. However, it would greatly increase

the complexity of the model without increasing significantly the

accuracy.
26Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D. Apalkov, H.

Nagai, A. Driskill-Smith, L. C. Wang, E. Chen, and Y. Huai, Appl. Phys.

Lett. 90, 132508 (2007).
27H. Sato, E. C. I. Enobio, M. Yamanouchi, S. Ikeda, S. Fukami, S. Kanai,

F. Matsukura, and H. Ohno, Appl. Phys. Lett. 105, 062403 (2014).

043902-7 Vaysset et al. J. Appl. Phys. 121, 043902 (2017)

http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1109/TMAG.2012.2197186
http://dx.doi.org/10.1109/TMAG.2012.2197186
http://dx.doi.org/10.1109/LMAG.2012.2188621
http://dx.doi.org/10.1103/PhysRevApplied.2.044001
http://dx.doi.org/10.1126/science.1120506
http://dx.doi.org/10.1109/LED.2011.2156379
http://dx.doi.org/10.1109/LED.2011.2156379
http://dx.doi.org/10.1063/1.4898042
http://dx.doi.org/10.1109/TCAD.2015.2488484
http://dx.doi.org/10.1109/TCAD.2015.2488484
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1063/1.4868621
http://dx.doi.org/10.1063/1.4953672
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1007/BF01377616
http://dx.doi.org/10.1063/1.1703193
http://dx.doi.org/10.1063/1.2717556
http://dx.doi.org/10.1063/1.2717556
http://dx.doi.org/10.1063/1.4892924

	s1
	l
	n1
	s2
	s2A
	d1
	d2
	s2B
	d3
	f1
	f2
	s3
	d4
	d5
	d5a
	d5b
	d5c
	d6
	d7
	d8
	d9
	f3
	f4
	s4
	s4A
	d10
	s4B
	d11
	d12
	f5
	s4C
	d13
	d14
	d15
	d16
	d17
	s4D
	t1
	t2
	s5
	d18
	s6
	s7
	s8
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	f6
	f7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27

