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Abstract—We present a theoretical and a numerical formalism
for analysis and design of spintronic integrated circuits (SPINICs).
The formalism encompasses a generalized circuit theory for spin-
tronic integrated circuits based on nanomagnetic dynamics and
spin transport. We propose an extension to the modified nodal
analysis technique for the analysis of spin circuits based on the
recently developed spin conduction matrices. We demonstrate the
applicability of the framework using an example spin logic circuit
described using spin Netlists.

Index Terms—Circuit theory, logic, magnetoelectronics, spin po-
larized transport, spintronics.

I. INTRODUCTION

S PINTRONICS, the technology of control and manipu-
lation of the spin state of electrons and nanomagnets,

is one of the most promising approaches for beyond CMOS
logic, memory, and analog applications [1]–[5]. Several spin
based devices have been proposed [6]–[19] with the possibility
of logic-nonvolatility, intrinsic directionality, higher logical
efficiency (large fan-in/fan-out) and reconfigurability. Com-
bined with novel approaches for memory hierarchy [20], [21]
and logic architecture [21]–[23], spintronics may enable high
performance, normally-off (with zero standby power), and
instantly-on computing engines.
In the past few years there has been tremendous progress in

spintronic devices and integration [2], [24]–[30] propelled by
the advances in materials and fabrication techniques. In partic-
ular, the advances towards in plane, three terminal and majority
gate spin transfer torque devices [31]–[34] have opened the pos-
sibility of spin logic devices which enable computation to be
performed entirely in the magnetic and spin states of materials.
While the proposed devices show promising trends for non-
volatile operation, low energy-delay products, and better logical
efficiency, the suitability of the devices as components for large
scale integration remains to be shown. In particular, significant
advances in spin logic device, circuit and system design are still
required in order to fully understand the suitability of spin de-
vices for general purpose computing.
The goal of this paper is to outline the principles for analysis

of integrated spintronic circuits so that the physics of spin trans-
port can be utilized by SPICE developers and subsequently by
circuit and system designers for the exploration of spintronics
for “beyond CMOS computing.” We base the present work
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Fig. 1. Conceptual diagram of two nodes in a circuit connected by a conduc-
tance branch. (a) Two nodes connected by a scalar conductance in a regular
circuit. b) Two nodes connected by a spin conductance in a spin circuit. (c) Con-
ceptual diagram of a spin current tensor when a spin current flows in a 3-D space.
(d) Spin current tensor is reduced to a spin current vector when a direction is
implied by a branch of the circuit. The linearity of the circuit implies that the
connecting branch is described by a 4 4 spin conductance matrix.

on the physical principles for spin transport developed over
the past few years, first in collinear magneto-electronics for
spin valves [35] and then noncollinear magneto-electronics
[36]–[38] for spin transfer torque devices. In particular, we use
the formalism for 4 4 spin conduction matrices, introduced
in [18], which enable the combined analysis of nanomagnets
connected by spin transport channels. These were utilized for
modeling of spin logic devices in [19]. We describe the circuit
level transport models for spintronic devices from the physics
of the spin transport through nanomagnets and nanochannels.
We generalize the Kirchoff’s conservation laws for spin circuits
to include spin dissipation [36]. We then extend the principles
of modified nodal analysis (MNA) [62] to spin circuits enabling
Netlist based SPICE simulations.

II. CONCEPTS OF VECTOR SPIN CURRENT, SPIN-VOLTAGE,
AND SPIN CONDUCTION MATRICES

To develop the formalism for spin conduction, let us consider
a branch of generic circuit consisting of two nodes , con-
nected by a conduction element [Fig. 1(a) and (b)].
We now describe the concept of vector spin current (with

the three Cartesian components specified by three scalar num-
bers), vector spin voltage (with three Cartesian components
specified by three scalar numbers), total current vector con-
sisting of the coulomb current and vector spin current, total spin
voltage (consisting of the coulomb voltage and vector spin
voltage) [18].

1549-8328/$31.00 © 2012 IEEE
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A. Node of a Spin Circuit

We formally define the node of a spin circuit as a collection
of physical points in a device or a circuit where all the quantities
of interest for spin and charge transport are at equilibrium [36].
The mechanisms driving the node to the state of equilibrium are
assumed to be much faster than the dynamics of the circuit.

B. Vector Spin Current

Vector spin current in a branch of a spin circuit, is the net
vector flow of magnetic moment along the branch of the circuit.
It has the units of amperes. In general, the spin current flowing in
a three dimensional space is a tensor [37], [39]. The spin tensor
is described by a direction of the flow of the charges constituting
the spin current and the direction of the net magnetic moment
(spin) of the charges along each axis of the Cartesian coordinates
[Fig. 1(c) and (d)]. However, in a circuit, the direction of the
flow of charges is defined by the connectivity of the branch and
therefore, the spin current flowing between two points of a spin
circuit is a vector.

(1)

The spin current can be also related to the velocity and spin
states of the carriers in a circuit/device. The components of the
vector spin current are expressed as a sum over the momentum
states of electrons, normalized to density of electrons

(2.1)

where are Pauli matrices, is cross sectional area, is the
velocity component normal to it, and is the spin densitymatrix.
It is defined with the negative sign to reflect the negative charge
of electrons, similarly to the electric charge current

(2.2)

This way, the spin current corresponds to the flux of magnetic
moments. Thus, in Fig. 1(a), the electrical current (blue arrow
to the right) is opposite to the flux of electrons (red arrow to the
left. If the net spin projection is positive, then the spin current,
blue arrow in Fig. 1(b), is opposite to the flux of electrons (red
arrow).

C. Vector Spin Voltage

Vector spin voltage at a node

(3)

can be understood intuitively as the state variable associated
with the accumulation of spins of a certain direction. It is related
to the half-difference in the electrochemical potentials of the
electrons with their spin up and down along the direction of this
vector. On the other hand, this difference can be related to the
half-difference of density of the electrons with spin up and spin
down, , following the Valet-Fert theory [1], [35]:

(4)

where is the total density, is the electrochemical potential.
Spin voltage is defined with the negative sign as well. It is done

Fig. 2. Accumulation of spin up electrons is expressed in a higher spin electro-
chemical potential. Diffusion current of up spin electrons flows from a higher
to a lower spin electrochemical potential. Equivalently, spin current flows from
higher spin voltages to lower spin voltages.

to make the definition consistent to the usual electrochemical
potential for electrons, which includes the term of voltage with
a negative sign. Overall, this choice of signs in the definitions
of spin current and spin voltage makes most of the relationships
similar to those between charge current and voltage as in Fig. 2.

D. Total Spin Current Vector

The total spin current is simply the combination of the charge
current and vector spin current. It is a 4 1 column vector.

(5)

The ratio between the charge current and the magnitude of the
spin current is the current’s spin polarization ratio

(6)

E. Total Spin Voltage Vector

The total spin voltage vector is the combination of the
scalar columbic potential and the vector spin potential. It is a
4 1 column vector.

(7)

The ratio between the scalar potential and the magnitude of the
spin potential is the voltage-spin polarization ratio of a node.

(8)

F. Spin Conduction Matrix

The concept of spin conduction matrix can be derived by pos-
tulating the linear response of current to voltage. This assump-
tion is expected to be valid in metals, where electron density
is high and electric fields change slowly compared to the scat-
tering time. In the worst case, one has to take the branches of
the circuit small enough to make it a good approximation. The
spin Ohm’s law, the linear relationship of spin voltage to spin
current is

(9)
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where G is the 4 4 conductance matrix:

(10)

G can also be interpreted as a 4 4 tensor that scales and reori-
ents the voltage vectors to obtain the spin current vector. There-
fore, the spin conductance matrix of a conductance element is
the matrix proportionality constant relating the vector spin cur-
rent through an element with the vector spin voltage difference
applied across a conductance element. In general the 16 com-
ponents of a spin conduction matrix are nonzero and are set by
the magnetic and geometric properties of the spin conductance
element.

III. CONSERVATION LAWS FOR SPIN CIRCUITS

We now describe the extension of the Kirchoff’s current and
voltage laws to spin circuits [36]. Establishing the conservation
laws is essential to setup a unique set of equations governing the
currents and voltages.

A. Kirchhoff’s Voltage Law Extension for Spin Circuits

The traditional voltage law for circuits is extended straight-
forwardly to spin circuits: since the sum of voltage differences
in any closed loop is zero

(11)

where is the set of all node pairs in a given closed loop.

B. Kirchoff’s Current Law Extension for Spin Circuits

Apart from the vectorial nature of spin currents and voltages,
the difference between spin circuits and electric circuits is that
charge is strictly conserved, but spin is not. We handle the non-
conservative nature of the spin currents entering a node by in-
troducing a spin dissipation current to a virtual ground [19]. The
traditional Kirchhoff’s current law is thus extended to spin cir-
cuits as follows: the sum of the vector spin currents entering
node is equal to the total dissipated vector spin current at the
node. At node , the spin node current law is given by (12),
where is the spin current from node to node ; is the
set of all nodes connected to node ; is the total spin current
dissipated due to spin flip events happening at the node .

(12)

IV. 4-COMPONENT SPIN CONDUCTION MATRICES FOR
NONMAGNETIC CHANNELS, SERIES, AND PARALLEL ELEMENTS

We describe spin conduction matrices for nonmagnetic ele-
ments (NME).

A. Spin Conduction Through Nonmagnetic Elements

The spin conduction through a linear nonmagnetic conduc-
tive element can be described as follows: a) the charge current
through the device is directly proportional to the applied scalar
voltage difference; b) the spin vector current though the element

is directly proportional and collinear to the vector spin voltage
difference applied to the NME, i.e.,

(13)

(14)

where is a scalar quantity, is the applied spin vector
voltage across the NME, g is the scalar conductance, is the
applied voltage difference.

B. Spin Conduction Matrix for a Spin Elastic Series Branch

Using the concept of spin conduction through nonmagnetic
elements, we write the conductance of a series resistor as [18]

(15)

where we described the matrix elements earlier. A resistor with
no spin flip is described fully by a single element as shown in
(15). However, a series resistor with spin-flip needs to include
a spin flip conductance to accommodate for the loss of spin
current.

C. Spin Conduction Matrix for a Spin-Flip Conductance

We use the concept of spin-flip conductance to handle a non-
spin-ballistic resistor. The conductance of a spin flip resistor is
[18]

(16)

where is the spin flip conductance to accommodate the loss
of spin polarization. The spin flip conductance sinks the spin
current to a virtual spin ground to emulate spin current conser-
vation even in presence of spin flip events.

D. Spin Conduction Model ( -or T-Distributed Equivalent)
for Distributed Channel With Spin Flip

The spin conduction model for distributed channels in
-equivalent and T-equivalent networks can be expressed
using the shunt and series conductances described above. Let
us consider a nonmagnetic channel connecting two nodes of
a spin circuit and , Fig. 4(a). The process of spin flip
which causes a loss of spin current from the channel is modeled
using shunt resistances which go to the spin voltage ground

, Fig. 4(b). No charge current flows through
the shunt elements since the conductance components are
zero.
The equivalent conductances in the -equivalent circuit

for a nonballistic elastic channel with cross section area of
the channel , channel resistivity , the channel length
, spin-flip length of the channel material is shown in

Appendix A.
Depending on the ground conditions, a T-model [Fig. 4(c)]

may be more convenient. The conversion from -equivalent to
a T-equivalent is as follows (see Appendix B for details):

(17)

(18)
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Fig. 3. Conservation laws for spin voltages and currents. (a) The sum of loop
voltage differences is zero. (b) The sum of the physical spin currents from all
physical branches is equal to the spin flip current to a virtual ground.

Fig. 4. and T Equivalent circuits for a normal metal distributed channel.
(a) Normal metal channel connecting nodes and (b) equivalent circuit
representing the distributed channel (c) T equivalent circuit representing the
distributed channel.

V. 4-COMPONENT SPIN CONDUCTION MATRICES FOR
MAGNETIC ELEMENTS

A. Spin Conduction Through Magnetic Elements

In contrast to spin conduction through nonmagnetic elements,
spin conduction through magnetic elements in general can have:
a) coupling between scalar voltages and spin currents and b)
the spin current can be noncollinear to the vector spin voltage
difference.
We next describe the conduction from a ferromagnet to a

normal metal.

B. Spin Conduction at Ferromagnet and Normal Metal
Interface

Spin conduction from a ferromagnet to a normal metal can
be understood as the spin dependent current in response to spin
voltages. The spin voltage at a node is in turn a result of a spin
polarized population set up via spin injection from elsewhere
[35]. Microscopically, the conduction is happening via spin de-
pendent reflection and transmission at the interface of the fer-
romagnet and the normal metal [40], [41]. Much of the for-
malism is derived from quantum transport scattering theory, see
e.g., [42], and draws on the work from superconductive trans-
port [43]. We refer the reader to [37] for a detailed physical
explanation.
We first derive the 4 4 conduction matrix of a ferromagnet

(FM) to normal metal (NM) interface (Fig. 5) from the spin
conduction equations [38]. The elements of the spin conduc-
tion matrix can be filled with experimental properties. Let the

Fig. 5. Circuit model for spin transport between a ferromagnet (FM) and a
normal metal (NM). The entire FM is treated as a node with a specific vector
spin voltage.

4 1 spin voltages at the FM and NM be and
respectively. Here for simplicity we ignore

the spin accumulation in FM. Let be the 4 1
spin current from FM to NM and be the vector direction of the
magnet’s magnetic moment. Then, according to [38], the charge
current is

(19)

The total spin current is given by

(20)

(21)

(22)

where is the component of the spin current parallel to the
magnetic moment and is the spin current perpendicular to
the magnetic moment. The expressions for spin torque conduc-
tances , and , which are related to the spin reflection
and transmission properties of the interface, are described in
Appendix C.
The spin conduction matrix elements can also be deduced

from experimental properties of the FM-NM interface. G is the
value of the total conductance of the interface, is the spin se-
lectivity of the FM-NM interface. is the spin transfer con-
ductance of the normal metal. The Sharvin conductance is the
quantum limit of spin transfer conductance. is the field-like
conductance term which is typically zero for many metal inter-
faces. It is encountered at higher voltages in tunneling barriers
adjacent to ferromagnets.

C. Spin Conduction Matrix of a Fixed Nanomagnet

We derive the conduction matrix in a special case of the mag-
netization parallel to the plane of the interface, as shown in
Fig. 5. We choose the coordinate system such that the x-axis is
along the direction of magnetization and the other two
axes form a right-handed coordinates. Then using projections to
these coordinates, (19)–(22) become

(23)

(24)

(25)
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Fig. 6. Circuit model for spin transport between a ferromagnet (FM) and a
normal metal (NM). The FM magnetization can point in any direction in three
dimensions as determined by the nanomagnet dynamics.

TABLE I
LIST OF VARIABLES FOR SPIN CIRCUIT THEORY

TABLE II
TRANSPORT PARAMETERS USED IN SPIN CIRCUIT THEORY

Hence, the generalized Ohm’s law for the FM-NM interface is
[18]

(26)
Since (19)–(22) are independent of the orientation of the inter-
face, we can extend by induction that the same expression for
the conduction matrix is valid for any direction of magnetiza-
tion provided that the coordinate system has its x-axis aligned
to it,

(27)

TABLE III
NANOMAGNET PARAMETERS FOR SPIN CIRCUIT THEORY USED IN
COMBINATION WITH A MACROSPIN NANOMAGNET MODEL

D. Spin Conduction Matrix of a Free Layer Nanomagnet

Now we need the expression of the spin conduction matrix
of the FM-NM interface in the fixed coordinate system tied to
the nanomagnet shape (e.g., elliptical, see Fig. 6) rather than
the instantaneous direction of magnetization. This derivation is
given in Appendix D. The 4 4 conduction matrix in the fixed
coordinate system given by

(28)

where R is the rotation matrix

(29)

The elements of the rotation matrix R are defined by the ex-
pression of the unit vectors of the axes (X, Y, Z) tied to the mag-
netization in terms of the fixed coordinates (x,y,z)

(30)

(31)

(32)

VI. SELF-CONSISTENCY OF NANOMAGNET DYNAMICS
WITH SPIN CIRCUIT ANALYSIS

We now describe a coupled spin transport-magnetization dy-
namics model [76] for solving spin integrated circuits which
employ nanomagnets for spin injection. The phenomenological
equation describing the dynamics of nanomagnet with a mag-
netic moment unit vector , the modified Landau-Lifshitz-
Gilbert (LLG) equation [49], [50], with spin transfer torques in
the form of [38] is (see Table III for parameters)

(33)

where is the electron gyromagnetic ratio; is the free space
permeability; is the effective magnetic field due to mate-
rial/geometric/surface anisotropy; is the Gilbert damping of
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Fig. 7. Self-consistency of nanomagnet dynamics with spin transport. (a) Ex-
ample circuit demonstrating the need for self-consistency. (b) Self-consistency
between LLG dynamics and spin transport.

the material and is the component of vector spin current per-
pendicular to the magnetization entering the nanomagnet,
is the total number of Bohr magnetons per magnet. can

also be rewritten as .
The positive sign of the spin torque term is related to the fact
(Section II-B) that the spin current is has the same direction as
the flux of magnetic moments. Implicit in the LLG equation is
the fact that absolute values of the magnetic moments of single
domain nanomagnets remain constant. The noise properties of
nanomagnets play a critical role in the dynamics of the magnets
[51]–[54]. See Appendix F for a description of the noise prop-
erties and numerical methods for stochastic LLG equations.
In general, the direction of the nanomagnet magnetic mo-

ments of a spin circuit and the spin transport via a spin circuit
are coupled together. The spin current entering a nanomagnet
is defined by the conductance of the nanomagnet at the present
angular position. This is because the equivalent conductance of
the nanomagnet is determined by the direction the nanomagnet’s
moment. Consider an example spin circuit shown in Fig. 7(a).
The current passing through the circuit depends on the direction
of the magnet while the direction of the magnet is modified
depending on the injected spin current. Hence at each instant of
time a self-consistent solution needs to be calculated to ensure
accuracy. Fig. 7(b) shows the self-consistent loop between LLG
nanomagnet dynamics and spin transport [76]. The LLG solvers
pass the condition of the magnets to the spin circuit and the spin
circuit solver passes the spin vector current to the LLG solver
at each pass of the self-consistent loop till a solution is reached.
Self-consistency can also be addressed by using an implicit nu-
merical solver [55].

VII. MODIFIED NODAL ANALYSIS FOR SPIN CIRCUITS

We now extend the modified nodal analysis (MNA) to spin
circuits in order to provide a scalable way to analyze multi-node
systems. A computational method for solving spin circuits is
essential even for few node circuits since the
ordering of the spin conduction matrices is crucial while cal-
culating equivalent conductances (see Appendix G). Following
closely the formalism for MNA [62], the spin-MNA solves the
following equation:

(34)

where is a matrix formed based on the connectivity of the
circuit, location of the voltage and current sources; is the
vector comprising unknown node voltages and unknown cur-
rents through the voltage sources; is the vector comprising of

Fig. 8. (a) Constitution of the MNA matrix equation for normal circuits
(b) Constitution of the Spin MNA matrix equation for spin circuits.

the voltages of the voltage sources and currents at the current
sources. can be also be written as

(35)

where matrix has the size (n is the
number of nodes, and m is the number of independent voltage
sources). Matrix has the size and is determined by
the interconnections between the passive circuit elements. Ma-
trix has the size and is determined by the connection
of the voltage sources. Matrix has the size and is
determined by the connection of the voltage sources. ( and
are closely related, particularly when only independent sources
are considered). Matrix D is and is zero if only inde-
pendent sources are considered.
We note that the spin currents entering the magnets can be

extracted as the Cartesian components of the total spin current.
For a magnet connected between i and j nodes, the spin cur-
rent entering i node

(36)

For a description of the rules/algorithm for writing matrix
please see Appendix H [63]. Matrix can be assembled as

shown in Fig. 8. The proposedmethod can handle a combination
of nonmagnetic and magnetic elements as well as dependent
and independent spin/regular voltage and current sources. For a
detailed description on the regular MNA algorithm and depen-
dent sources please see [64], [65]. The solution of the spinMNA
equation can be simplified by optimal ordering of the equations
to obtain sparsity [66] among other optimization techniques. For
an algorithm for parsing a netlist to do MNA, see for example
[65].

VIII. SIMULATION OF AN EXAMPLE SPIN CIRCUIT

We now describe an example spin circuit with embedded
nanomagnets to demonstrate the effectiveness of the proposed
framework. Let us consider a nonlocal spin injection detection
device shown in Fig. 9 [19], [31], [34].We consider a lateral spin
injection-detection device which has been proposed recently as
an all spin logic device. The device consists of two nanomagnets
communicating via a nonmagnetic channel. The device operates
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Fig. 9. A lateral spin logic device comprising two nanomagnets and nonmag-
netic channels. Channel connecting 1–2 acts as an interconnect between the two
magnets transporting spin polarized currents. (a) Top view of spin logic device.
(b) Side view of a lateral spin logic device. (c) Netlist of the circuit that can be
parsed by a spin-MNA algorithm. (d) Circuit model of spin logic device.

as an inverting gate for positive applied voltages and a nonin-
verting gate for negative applied voltages.
Intuitively, the operation of the device can be explained as fol-

lows: the magnets create spin polarized population densities un-
derneath the magnets and setup spin diffusion currents through
the channel. The direction of this spin diffusion current is set
by the relative strength of the spin polarization of the carriers.
For a ground terminal set near the input magnet it can be shown
that the magnet 1 acts as a fixed magnetic terminal, while the
second magnet responds to the spin diffused to beneath it, de-
pending on the applied voltages. For a positive applied voltage,
the device shown in Fig. 9 acts like an inverting gate, where the
output becomes a logical invert of the input. For negative ap-
plied voltages, the output becomes a copy of the input magnet’s
condition. The sectioned structure of the channel is required
to isolate spin logic gates, where the interconnection between
gates (concatenation) is achieved via a continuous free layer
magnet. The nonreciprocity of (output to input signal transport)
spin logic comes from an asymmetry between input and output
magnets. This asymmetry can be achieved via: a) an asymmetric
overlap of the magnet such that the area of the output is smaller
than the area of input magnet; b) asymmetric ground condition;
c) asymmetric spin injection efficiency (Fig. 9); d) asymmetric
spin damping constant.

TABLE IV
SPIN MNA MATRICES

TABLE V
PARAMETERS USED FOR EXAMPLE CIRCUIT SIMULATION

A. Example Spin Circuit: Numbering the Nodes, Forming
Spin Netlist

Wemodel the device as a spin circuit comprising of two nano-
magnets and nonmagnetic conductive elements. The nonmag-
netic elements model the behavior of the metal channels con-
necting the magnets to each other and to the ground. In Fig. 9,
we show the top view and side view of the device. We choose
the node-0 to be the ground and number the remaining nodes as
per the convention of MNA. Node 1, 2 represent the points in
the device just below the magnets representing the ends of the
channel. Node 3 is common node shared by the magnets and the
supply. We can now derive the circuit diagram for the device
as shown in Fig. 9(d). The magnetic elements are represented
by ; the nonmagnetic channel is represented by a
-equivalent circuit as described in Section IV-D. The ground
connection branch is represented by a T equivalent circuit.
The assumed dimensions and the list of variables are shown in
Table V. We show the netlist for the device in Fig. 9(c).

B. Example Spin Circuit: Forming the MNA Equation

Using the rules described in Appendix H, we can build the
spin-MNA equation for the circuit in Fig. 9(d) as follows: the G
matrix is filled with the spin conductivity elements connecting
to nodes 1–4. The elements representing connectivity (5,3) is
filled with an identity matrix such that the applied voltage at
node 3 is . The row 3 represents the KCL at the node 3 and
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correspondingly has an identity matrix at element (3,5). See
(37) at the bottom of the page.

C. Example Spin Circuit: Self-Consistent Solution of
Spin-MNA With LLG Equations

The self-consistent solution is obtained by solving all the
nanomagnet dynamical equations consistently with the trans-
port equations (Fig. 8). The full set of equations for this example
system then becomes

(38)

(39)

where the voltages are derived from (37), at the bottom of the
page.
We numerically simulated the spin logic circuit using self-

consistent solution of the spin-MNA equation with stochastic
LLG equation. The specific parameters used for this example
are shown in Table V for reproducing the results. We note that
the stochastic nature of the LLG equations produces an inherent
variability in operation of spin devices.
We show the basic operation of the device in Fig. 10. In

Fig. 10(a) we show the dynamics of the magnetic moment of
the nanomagents for various applied voltages. During the time
from 0 ns to 2 ns, a positive voltage is applied at node 3, the
device acts as an inverting gate during this interval. The de-
vice responds over a time of and the output flips to
a state opposite of the input magnet. At 2 ns, the supply voltage
is flipped to , the device acts as a noninverting gate in
this interval and the output responds at and flips to a
state parallel to the input magnet. The trajectories of the mag-
nets’ magnetic moments are shown in Fig. 10(b).
We now extract the spin and charge currents via the cir-

cuit using the branch conductances. The spin currents along
the nanomagnet easy axis are show in Fig. 11(a). The total
energy dissipation of the device can now be calculated as
the total charge current sourced from the supply times the
supply voltage. The total electrical power of the device can be
extracted as shown in Fig. 11(b).
This circuit modeling described here shows that the spin logic

circuit, using Table V parameters, operates with transient en-
ergy-delay metrics of with up to a 2 GHz response
and with zero leakage power (ignoring the overheads). Com-
pared to a CMOS technology with a 60 nW/transistor idle power
[74], nonvolatile spin logic with state hold power and 7

Fig. 10. (a) Transient self-consistent simulation of a spin circuit device.
(b) Trajectory of the magnetic moment of the nanomagnets.

Fig. 11. (a) Spin current via input and output magnets. (b) The instantaneous
power through the spin logic device.

year retention time will outperform CMOS logic in idle power
by several orders of magnitude. We note the leakage power of
the MPU units have approached 50% over the past few years
[75]. For transient energy-delay improvement, a physically real-
istic simulation framework, along with improved spin-electrical

(37)
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transduction methods, materials, and anisotropy engineering,
can address this gap in developing device and circuit topolo-
gies to approach the fundamental performance of the spintronic
devices and circuits for the beyond CMOS era.

IX. CONCLUSION

In summary, we describe a spin circuit framework combining
spin transport with generalized modified node analysis to en-
able SPICE for spintronic circuit analysis. The framework han-
dles both magnetic and nonmagnetic components with the com-
monly used MNA methodology. This framework will enable
study of spintronics for logic, interconnect, memory, and hybrid
integration of spin devices with CMOS circuits. The ability to
synthesize and analyze spintronic CMOS integrated circuits will
enable and accelerate the study of spintronics with the potential
attributes of nonvolatility, superior energy-delay, higher logical
efficiency, recofigurability, and suitability for novel computa-
tional architectures and logic-memory paradigms.

APPENDIX A
G-MATRIX ELEMENTS OF A NONMAGNETIC

DISTRIBUTED CHANNEL

Spin-dependence conduction can be described in a contin-
uous medium (as opposed to a lumped-element circuit) via the
drift-diffusion equations [35]. In the following, we provide the
derivation of normal magnet (NM) spin conductance matrix in-
troduced in [18]. We show the spin conductances for currents
along one direction (x) and one direction (s) of spin, and then
generalize it to arbitrary directions of spins. Then the drift-dif-
fusion equations for the current density J, spin current density
, voltage V, and spin voltage in a nonmagnetic material are

(A1)

(A2)

Current continuity implies (Kirchhoff current law)

(A3)

(A4)

where the conductivity is , and the spin diffusion length is
. A general solution for these equations is

(A5)

where the boundary conditions set the coefficients , . The spe-
cific solution for the uniform conductor of length is

(A6)

(A7)

(A8)

(A9)

(A10)

where we designate ;
From these equations, and for the cross-sectional area of

the conductor

(A11)

According to the above notation, the following relations must
be satisfied for the -network

(A12)

(A13)

(A14)

(A15)

(A16)

for all values of the boundary conditions (specified by a, b).
Taking a special case of , , we arrive at the equations

(A17)

(A18)

which have the solution

(A19)

(A20)

Hence, the conductance for the series branch of the network
is [18]

(A21)

The conductance for the parallel branch of the network is

(A22)

APPENDIX B
TO T EQUIVALENT CIRCUIT TRANSFORMATION

Spin-dependent conductance with spin relaxation can be
equivalently represented by -shaped [Fig. 4(b)] or T-shaped
[Fig. 4(c)] networks. Here we derive a general relation between
these two approaches.
In both cases the vector voltages at the terminals, V1 and V2

are the same. In the -network, the spin-relaxation currents are

(B1)

(B2)
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and the current passing through the center conductance is

(B3)

They are related to the total currents entering and leaving the
network as follows:

(B4)

(B5)

Using these relations in (C4), (C5) is convenient to express the
sum and the difference of the in- and out-currents.

(B6)

(B7)

Similarly we obtain for the T-network; the current from the
middle node to the ground is related to the vector voltage at this
node

(B8)

and the in- and out-currents are

(B9)

(B10)

The current conservation results in

(B11)

The voltage at the middle node is thus related (for nonzero spin
relaxation) to the in- and out-currents

(B12)

As before, we express via the unity matrix

(B13)

(B14)

Since the two expressions for in- and out-currents should be
equivalent, the following relations between nonzero conduc-
tances must hold:

(B15)

(B16)

Simple algebraic manipulations permit the expression of the
T-conductances in terms on -conductances

(B17)

Note that this derivation is not trivially reduced to the results of
the traditional electronic network theory, because the conduc-
tances are matrices rather than scalars.

APPENDIX C
G-MATRIX ELEMENTS OF FM EXPRESSED AS SPIN REFLECTION

AND TRANSMISSION COEFFICIENTS

4 4 CONDUCTION MATRIX ELEMENTS OF A

FERROMAGNETIC METAL IN CONTACT WITH A NORMAL
METAL EXPRESSED IN TERMS OF SPIN REFLECTION AND

TRANSMISSION COEFFICIENTS: Earlier, we described the

conduction matrix elements of a FM as phenomenological
constants extracted from experimental properties of the
FM-NM conduction. Here, we provide a description of the
conduction matrix elements of a FM that is derived from an ab
initio approach [18], [38]. The conduction matrix

(C1)

can also be written in terms of spin scattering conductance ele-
ments as

(C2)
where , and are the matrix elements derived from
spin scattering at the FM-NM interface. The conduction matrix
elements of an FM-NM interface can be described in terms of
the reflection and transmission properties of the spin up and spin
down electrons incident from an NM to FM [38].

(C3)

(C4)

(C5)

where is the conductance per spin of a ballistic channel
with ideal contacts [38]; , are the transmission coeffi-
cients for up and down spin electrons from NM to FM; ,

are the reflection coefficients of the up and down spin elec-
trons at the FM-NM interface; is the number of modes in the
NM, is the number of modes in the FM. The number of modes
in a metal can in-turn be written from the metal’s Fermi
wave vector [48].
It has been argued that , are close to zero for many

material systems [38], which simplifies the spin torque conduc-
tance to to

(C6)

APPENDIX D
G-MATRIX OF FREE FM LAYER

DERIVATION FOR FREE MAGNETIC LAYER CONDUCTION
MATRIX: Here we derive the G-Matrix for a free layer FM with
an arbitrary magnetic moment direction (see Fig. 7). Let
be the angle of the magnetic moment with z-axis and be the
angle of the projection of , with x-axis. We can write in
co-ordinate system xyz as

(D1)

Let us choose a new coordinate system XYZ such that the is
collinear with the new X-axis. (Refer to Section V)

(D2)



MANIPATRUNI et al.: MODELING AND DESIGN OF SPINTRONIC INTEGRATED CIRCUITS 2811

(D3)

(D4)

In the new coordinate system

(D5)

where is the matrix described in Section V. Let us substitute

(D6)

(D7)

and rearrange to obtain the current, voltage relation in the xyz
co-ordinate system. We obtain

(D8)

Hence, the conductance matrix for an FM with magnetic mo-
ment along an arbitrary direction is given by

(D9)

APPENDIX E
CONVERSION FROM SPINOR BASIS TO VECTOR BASIS

Conversion Between Spinor Spin Current/Voltage Basis to
4 Component Vector Current/Voltage Basis: The derivations
for magneto-electronic circuit theory are often performed in the
spinor basis for the electrons [39]. For convenience we list the
conversion from spinor basis to Cartesian vector basis as well
as 4-component current basis. The current in a spinor basis can
be written as [39]

(E1)

where is the Pauli spin matrix

(E2)

which yields

(E3)

Hence, the 4-component current vector can be derived from the
spinor current as follows:

(E4)

Similarly, 4-component vector spin voltage can be derived from
spinor voltage as follows:

(E5)

APPENDIX F
STOCHASTIC LLG EQUATIONS

THERMAL NOISE OF NANOMAGNETS: The dynamics
of nanomagnets are strongly affected by the thermal noise.
Thermal noise in a nanomagnet manifests as fluctuations to the
internal anisotropic field [51]–[54]. The thermal noise can be
considered as a result of the microscopic degrees of freedom
of the conduction electrons and the lattice of the ferromagnetic
element [51].
At room temperature T, the thermal noise is described by a

Gaussian white noise (with a time domain Dirac-delta auto-cor-
relation). The noise field acts isotropically on the magnet. In
presence of the noise, the LLG equation can be written as

(F1)

where wemodified (33) by adding temperature dependence. The
internal field is described as

(F2)

(F3)

(F4)

The initial conditions of the magnets should also be random-
ized to be consistent with the distribution of initial angles of
magnet moments in a large collection of magnets. At tempera-
ture T, the initial angle of the magnets follows [52]

(F5)

NUMERICALMETHODS FOR STOCHASTIC LLGEQUATIONS:
An accurate choice of the method for integration of the sto-
chastic LLG equation is essential since: a) the stochastic differ-
ential equations (SDE) require careful handling of the order of
integration [67], [68]; b) a multiplicative white noise requires
an appropriate choice of calculus [53], [69]. The appropriate
model for direct integration of SDE are usually first order in-
tegration methods such as Euler & Heun. Even though higher
order methods have been proposed in the literature, the accu-
racy and applicability for realistic SDEs have been questioned
[67], [68]. Hence, a first order integration method with a fixed
time step is generally recommended [53].
Secondly, Stratonovich calculus is used for interpreting the

multiplicative white noise. We used a mid-point integration
method [53] to apply the Stratonovich calculus while inte-
grating the LLG equation. The discretized integration rule is

(F6)

where . The variance of the noise varies depending
on the time step size. The discretization was performed inter-
nally using a matlab implicit self-consistent solver.
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APPENDIX G
EQUIVALENT CONDUCTANCES SERIES AND PARALLEL

The equivalent conductance of a two spin conductance ele-
ments connected in parallel is

(G1)

(G2)

The rule for voltage division says, voltage across conductance
, 2 is

(G3)

APPENDIX H
WRITING SPIN MNA EQUATIONS, NOTATIONS

Rules for writing the spin MNA equations are very similar to
the rules for regular MNA [63], [65]. However, care should be
taken to include the spin current conservation law described in
Section III. Also, 4 4 identity matrices are to be used where
appropriate to indicate the voltage sources.
To apply the spin-MNAmethod to a circuit with n nodes with

m voltage sources, the steps are:
1. Number the nodes: Select a reference node (usually the
ground, numbered 0) and name the remaining n–1 nodes.
Also label currents through each current source.

2. Name the currents: Assign a name to the current through
each voltage source flowing from positive node to negative
node of the source.

3. Apply spin KCL: Apply Spin current conservation law at
each node with current into the node to be positive.

4. Write an equation for spin voltage at each spin voltage
source.

5. Rearrange the equations to the form of (36).
6. Invert the matrix and multiply with to obtain the volt-
ages of the nodes and current of the sources.

7. Using conductance matrix to calculate the relevant
currents.

APPENDIX I
COMMENT ON EXTENSION FOR SEMICONDUCTOR

SPIN TRANSPORT

We briefly comment on the extendibility of the present ap-
proach to semiconductor spin transport [70]. The major mod-
ifications required to handle semiconductors using conduction
matrix approach are as follows: a) conductance matrix for de-
scribing drift-diffusion spin current [71]; b) description of dilute
magnetic semiconductors; c) appropriate definition of spin cur-
rents in presence of spin orbit coupling [72], [73].
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