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The ability to manipulate light has enabled robust growth of 

communications over the past 50 years. The energy spent by interconnects is 

now a major consideration for high performance computing, datacom 

servers and low carbon footprint telecommunications. Hence, it is of great 

interest to pursue novel devices for manipulating light. Silicon 

nanophotonics, which is the exploration of optical devices based in silicon 

compatible materials, has emerged as a powerful solution for providing the 

bandwidth for future communications. This thesis attempts at scaling the 

silicon nanophotonic interconnects to meet the future needs. 

 

The first key result of my thesis is an 18 Gbit/s micro-ring modulator. This 

is the fastest digital modulation speed shown in silicon micro-rings to date. 

In the first section of this thesis, I will show how to achieve very high speed 

modulation in silicon substrates using silicon micro-ring modulators. In the 

effort to optimize their performance I have shown the following key 

milestones:  

1. Speed: 18 Gbit/s modulation in a silicon micro-ring modulator (MRM) 



 

2. Robustness: 20 K temperature stability using a silicon micro-ring 

modulators 

3. Size: 2.5 micron radius silicon micro ring modulator : Smallest MRM 

to date 

4. Scalability: 50 Gbit/s modulation capacity using 4 WDM channels : 

Largest WDM modulation capacity using micro-rings 

5. Low Voltage Swing: 150 mv swing voltage modulation in silicon micro-

rings. 

6. Long Haul: Error free transmission of 12.5 Gbit/s signal over 80 km 

on a standard single mode fiber. 

 

The second part of my thesis is on slow and fast light in silicon. Using two 

micro-rings coupled in a coherent fashion, I have shown the following: 

7. Superluminal propagation on a silicon chip using double ring cavities. 

8. Designed, fabricated and tested electro-optically tunable optical delay 

on a silicon micro-chip, electro-optically tunable variable quality factor 

cavities. 

 

The third part of my thesis explores the possibilities when MEMS and 

silicon photonics are put together. I have attempted two key problems :  

9. Non-reciprocal devices in opto-mechanics. 

10. Synchronization of frequency and phase in micromechanical devices 

using opto-mechanics. 
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Chapter 1 

Introduction: 

SCALING SILICON NANOPHOTONIC INTERCONNECTS 

  
 

Abstract: In this chapter, I briefly review the motivation for optical 

interconnects and the need for nanophotonic solutions to interconnect 

problems. I will then introduce and discuss figures of merit for 

nanophotonic interconnects.  

 

Based on system level arguments, I will present 4 desirable features for 

silicon photonic interconnect devices: size (compactness), high speed, and 

multi-wavelength, hit-lessness as pre-requisites for silicon photonic chip/chip, 

inter-chip interconnects. We will also discuss the requirements in electrical 

energy, optical insertion losses, scalability, robustness and CMOS 

integration. In chapters 2 to 6, I will explore these ideas. 

  

I will also present the motivation for exploring non-traditional interconnect 

devices for meeting secondary targets for optical integration such as giant 

tunability, interconnect latency, optical isolation and clock synchronization. 

In chapters 7 to 10, I will explore these ideas, namely: Optical delay & pulse 

advancing, optical diodes and Optical synchronization.  
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1.1 Introduction: The growing need for novel nanophotonic 

interconnects 

Increasing bandwidth needs of microprocessors, datacom servers and 

bandwidth intensive applications [1-3] such as medical imaging [4, 5] & 

cloud computing [6] have created an immediate need for new interconnect 

solutions. Interconnects used in microprocessors [7], data centers [8, 9] and 

optical networks [10] are reaching a point where new technologies are 

essential to sustain this growth. Hence, it is of great interest to pursue novel 

methods for manipulating light to enable the next generation of connected 

world. 
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Figure 1.1 : Interconnect growth in telecom: Growth of Bandwidth Capacity 
 

Multiple indicators across telecom, datacom and chip scale computing 

indicate a need for new optical technologies that are energy efficient, 

compact and compatible with existing technology infrastructure. In figure 1, 

I show the growth of bandwidth X distance capacity of internet over the 

past 3 decades. We can quickly identify a growth of 10X for every 4 to 5 
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years over the past 30 years roughly following an empirical trend given 

by skmPbXCxD Y /2178.5 053.1/  where Y is years since 2000 [3].  
 

 

Figure 1.2: Datacom: Growth of Energy Density of a Datacom server farm 

 

Figure 1.3: Microprocessor Bandwidth needs assuming 1 Byte/FLOP I/O 
 

In figure 1.2, I show the heat density of existing datacom servers. In 

2010, the heat density of datacom servers is expected to reach 100 kW/m2 
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producing large stress on the HVAC requirements of data-servers. A third, 

indicator is shown in figure 3, where I show the number of floating point 

operations in a microprocessor as projected by ITRS [1]. Following the well-

known Amdahl‘s balanced system law [11, 12], for an I/O bandwidth of 1 

byte/FLOP, we arrive at a total interconnect bandwidth approaching a peta-

bit/s. It is now well established that novel optical technologies can play a 

significant role in achieving these milestones [13-19].  

 

1.2 Figures of merit for future nanophotonic interconnects and 

interconnect components 

I will first establish figures-of merit for optical interconnects & interconnect 

components from the point of view of electronic-photonic integration [14].  

 

a. Interconnect Density (β): Interconnect density is the bandwidth (B 

in bits/s) of an interconnect normalized for the width of the interconnect. 

The interconnect density on a microprocessor scales as the wire pitch of 

interconnects scale as per ITRS requirements. The limit of interconnect 

density for electrical interconnects due to signaling limits [20] is given by: 

         

2

0 














L

A
BBelectrical     (1) 

Which gives an electrical bandwidth density of, 

           
20

L

h
Belectrical      (2) 

Where Belectrical is the electrical data bandwidth that can be transmitted 

through a metal interconnect of cross section A over a length L; B0 is 1016 
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bits/s resistive-capacitive lines on chip, 1017 to 1018 bits/s for off-chip 

equalized lines.; h is the height of the metal layer forming the interconnect. 

Typical ITRS projections for electrical interconnect density are in the order 

of 10-20 Gbit/s. µm. 

 

The fundamental limit to optical interconnect density is greatly enhanced by 

the large central carrier frequency and the ability to multiplex large number 

of wavelengths allowing as high as 20 Tb/s on a single fiber [21, 22]. On a 

silicon nanophotonic waveguide, the bandwidth limit can be written as :  

    
nw

CWaveguide

1
0                                           (3) 

Where Co is a constant determined by the non-linear effects, waveguide 

dispersion and two photon absorption due to presence of large optical 

powers [23]; w=λ/15~ 103 nm is space rate of decay of the evanescent field 

of the waveguide [24] and n is the arbitrary factor chosen such that e-n gives 

the factor by which the evanescent field decays. The typical pitch for 

placing two silicon nanophotonic waveguides can be estimated as 15λ/15 ~ 

1550 nm. Novel CAD methods to separate the waveguides can reduce the 

effective pitch. Note that unlike electrical case, the bandwidth density is not 

a strong function of the length of propagation. L, the distance over which 

the transmission takes place only enters the analysis as a secondary effect 

over several meters of propagation even in presence of strong waveguide 

dispersion [25, 26]. The ability to send up to 1 Tb/s on a silicon waveguide 

have been tested experimentally [23], indicating bandwidth density limits of 

the waveguides exceeding 1018 bits/μm.s. 
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b. Single Wavelength Channel Bandwidth (f): Single channel 

bandwidth is decided by the operation speed of the receiver and transmitter 

at the end points of the interconnect. The limits to the optical device speed 

are given by the speed of modulators and detectors : 

For free carrier dispersion modulators: 

nw

v
f sat

optical 
min

1


    (4) 

For kerr and pockel effect modulators: 

            
Kerr

opticalf


1
                        (5) 

For photoelectric effect detectors: 

                                   ),
1

min(),
1

min(
nw

v

CRnw

v
f sat

inTIAinTIA

sat

RC

optical 


        (6) 

Where vsat is the saturation velocity of carriers in the electro-optic material 

(set by the optical phonon dispersion curves), typical values of 107 cm/s. 

w=λ/15~ 103 nm is space rate of decay of the evanescent field of the 

waveguide [24] and n is the arbitrary factor chosen such that e-n gives the 

factor by which the evanescent field decays. The typical clearance for 

placing thin film planar doped regions next to silicon nanophotonic 

waveguides can be estimated at 3λ/15 ~ 310 nm. However, both 

modulators and detectors will be essentially limited by the speed of the 

driving electronics, set by the level of drive current and Ion per unit micron 

of the technology node being considered. Note that single channel speeds 

for electrical devices can be obtained by the limits given in previous section: 
2

0 














L

A
Bfelectrical                                             (7) 
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Or for a certain ITRS node, assuming that the propagation delay is the gate 

delay (1F04+ distributed wire delay 0.4RwCw) the interconnect bandwidth 

is given by  

wirepitch

AreaWidth

CRF
f

wirewire

electrical .
2.1043

1


     (8) 

  

c. Interconnect Energy (Electrical + Optical) (E per bit ):  

Interconnect energy per bit for electrical interconnects is decided by the 

requirement to charge and discharge an electrical wire with specified 

capacitance and resistance (equivalent energy loss depending on the exact 

implementation for RLC or Non-linear transmission lines). The switching 

energy per bit for electrical interconnect is given by 

     2

rSwElectrical CLVE      (9) 

Where C is the capacitance of the section of line per unit length of the wire; 

L is the length of the interconnect for unrepeated lines and a constant Lrepeat 

for repeated lines. Vr is the signaling voltage swing. Typical values for C are 

200 aF/μm. The best case values for the optical interconnects show a 

strong dependence on the modal volume of the optical components and the 

operating voltages for the driver and receiver electronics. 

 

The minimum bound for an optical interconnect‘s electrical energy per bit 

can be written as: 

           EODetectsourcetotal EEE  ,     (10) 
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Where Esource is the energy spent in the optical source signal generation; EEO-

OE is the energy spent in electro-optic and optoelectronic conversions. Esource 

can be written in terms of drive laser parameters and insertion losses as  

                                            lLdr

mDL

Detectsource e
e

CV
E  ..,




  (11) 

Where Esource is the per bit optical energy for the light source, Cd is the 

capacitance of the detector, Vr is the minimum voltage to which the 

detector capacitance is to be charged, ηL , ηD are the quantum efficiencies 

of the laser and detector normalized to the maximum values, κ is the laser 

to waveguide coupling efficiency, α is the modulator insertion loss, l is the 

decay parameter or the waveguides. For an idealized detector capacitance of 

10 fF and optimum conditions this indicates an optical energy of 8.3 fJ/bit. 

Note that waveguide losses, modulator insertion losses, input laser 

inefficiencies can quickly add up to as much as 100 fJ/bit of source laser 

power at nominal operation conditions (90 % coupling efficiency, 3 dB 

insertion loss, 0.5 W/A laser efficiency, 80 % detector responsitivity, 90 % 

modulator transmission). 

 

The minimum electro-optic conversion energy per bit is given by 

     





















dn

dT

d

dn

TV
E m

EO



                      (12) 

Where EEO is the electro-optic conversion energy per bit, assuming Vm 

modulator drive energy, Θ electro-optic modal volume, ΔT is the optical 

transmission change, 
dn

dT  is the spectral sensitivity of the optical device,  

d
dn

 is the effective free carrier dispersion of the electro-optic device. Per 
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bit energies approaching 10 fJ/bit in depletion based, ultra low modal 

volume modulators can be expected in the near future. 

 

Hence, the minimum bound to total interconnect energy with the tuning 

energy can be now obtained. In the presence of tuning power to 

compensate for device fabrication errors and thermal instabilities, 

 

(13) 

 

Following the earlier arguments, this gives a minimum bound of 

interconnect energies at ~ 100 fJ/bit with state-of-the-art devices, including 

the tuning power for an optically optimized system operating at low 

voltages, small capacitances, ultra low modal volumes. We note that 50 

fJ/bit energy is spent only in tuning the device on resonance, hence low 

modal volume, thermally robust devices or ultra efficient tuning 

mechanisms can play a critical role in reducing the interconnect energy. In 

order to scale the energy to sub 10 fJ/bit, new and break through devices 

need to be pursued while scaling the bit rate to reduce the contribution of 

the tuning power. 

 

d. Areal Bandwidth Density (D in bits/μm2) :  

The large mismatch between the optical component sizes (set by wavelength 

of operation and refractive indices) requires us to introduce a new figure of 

merit called the area bandwidth density. The area taken by the wires 

tune
mlLdr

mDL

total P
B

dn

dT

d

dn

TV
e

e

CV
E

1
.. 



















 






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themselves is separately accounted in the figure of merit, interconnect 

bandwidth density. The role of area bandwidth density is to quantify the 

footprint taken by optical components to provide a certain bandwidth 

density. 

 

The modal volume of modulators as well as detectors enhanced by 

resonance effects are ultimately limited by diffraction limits, a notable 

exception being dielectric discontinuity enabled cavities [26]. 

    
Area

f
D  , 

nw

v
f sat

optical 
min

1


,    (14) 

          
2

2
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
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

N
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
                                                      (15) 

                                 
3

2










N
nk

v
D sat

optical


                                (16) 

n is the arbitrary factor chosen such that e-n gives the factor by which the 

evanescentfield decays, N is the index refractive index of the guiding 

medium. k is an arbitrary factor more than 1. The density will have to be 

adjusted to allow for the driver and receiver circuits. 

The bandwidth density for electrical interconnect will be dominated by the 

repeater electronic area given by, 

     (17) 23 noptoptrepeater LhKA 
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Where Kopt is the optimum number of repeaters with a value typically 

between 30-50 [27], hopt is the optimum receiver size with a value typically 

between 25-50 for sub 1 micron width wires. Hence,  

    
23 noptopt

electrical
electrical

LhK

f
D                  (18) 

   
wirepitch

AreaWidth

CRFLhK
D

wirewirenoptopt

electrical .
2.1043

1

3

1
2 

  (19) 

For a 2 Gbit/s link, with Kopt, Hopt =50 and a technology node of 22 nm, 

this implies a bandwidth density of 500 Tbit/s.mm2.  

Table 1.1 : Figures of merit for nanophotonic interconnects 

Figure of 
Merit 

Electrical Optical 

Interconnect 
Density (β) 20

L

h
Belectrical   
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System level requirements for nanophotonic interconnect:  

Hitless Operation and Inter-channel Interference: Hitless operation is an 

essential condition for co-operation of a multi wavelength optical network 

tune

m

lLdr

mDL

total

P
B

dn

dT

d

dn

TV

e
e

CV
E

1

..























 









 

12 

on chip. By ensuring that the modulators, switches, filters and other 

photonic components are spectrally specific we can avoid signal degradation 

due to operation of components at nearby wavelengths. Novel spectral 

design of optical components is essential for avoiding cross talk between 

optical wavelengths in a potential WDM system. 

 

a. CMOS Compatibility: The requirement of a light isolating oxide layer of 

3 micron thickness imposes a strong limitation on the CMOS compatibility 

of optical components in silicon. Electronic oxide layer thicknesses are lower 

than 100 nm for allowing large thermal conductivity. It is therefore essential 

to come up with new techniques to allow for optical integration.  

 

 

Figure 1.4: Cross section of an SOI electronic chip; oxide thickness and 
thermal budgets can impose strict design restictions for optics. 

 

Two possible methods have been actively pursued a)Substrate removal b) 

3D integration using deposited polysilicon/SiN materials. I will outline the 

3D integration technique using deposited materials briefly in the next 

section. 
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b. CMOS Electrical Compatibility (Low Current, Low Voltage): To 

allow for the CMOS length scaling, the peak high speed voltages available on 

chip have been scaling down rapidly. The present generation CMOS already 

uses sub 1V voltage swing for CMOS logic and the voltage is expected to 

scale to 600 mV in the future. Hence, it is important to pursue new methods 

for low voltage switching. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.5: Voltage and technology node scaling in CMOS [1] 

 

c. Scalability: The proposed interconnect scheme should allow a simple, 

low complexity, low operational overhead multiplexing scheme. As I will 

demonstrate later, a multiplexing scheme is essential for optics to compete 

with electronic interconnects due stringent requirements of bandwidth 

density per unit pitch length. 
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d. Temperature Robustness: The proposed modulator should be robust to 

variations in temperature for operating computational environments. 1) Run-

time operating temperature shift of 20 K 2) Quiescent temperature shifts of 

>60 K.  

Figure 1.6: Spatial Temperation Variation on a CMOS Microprocessor [28] 
[Courtesy: Prof. Jose Renau, UC Santa Cruz] 

 

Figure 1.7: Temporal Temperation Variation on a CMOS Microprocessor 
[28] [Courtesy: Prof. Jose Renau, UC Santa Cruz] 

It may be possible to tradeoff modal volume with temperature stability. 

However, the energy/bit constraints will limit the on-chip devices to small 
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modal volumes. Hence, viable low power tuning mechanisms need to be 

pursued to reduce the tuning power spent per bit. 

 

1.3. Compact, Multi-wavelength, High speed, CMOS Silicon Photonic 

Interconnect Components 

Based on the figures of merit proposed earlier, I will present a minimal set of 

optical components that can enable a scalable architecture. Four rules for 

optical components on chip can be realised from the presented figures of 

merit. 

 Table 1.2: Minimal Features of nanophotonic interconnects 

Property Description FOM Target 

Compact Size of modulators, 
detectors, switches 

A > 100 Tbps/mm2 
Modal Volume ~ 1 μm3 

Detector Cd< 10 fF 

High Speed Data Rate per channel f~  
10-40 Gbps* 

Multi-wavelength Multiple Wavelength 
networks 

Interconnect Density 
(B) 
 > 50 Gbps/ μm 

CMOS compatible Low voltage, low 
current 

Vdd 

< 600 mV 

 

We identify 4 essential features of silicon photonic interconnect 

components. These are compactness, broadband operation (High speed), 

Multiple-wavelength compatibility, CMOS electronic compatibility. CMOS 

compatibility in drive currents and voltages must be ensure so that future 

technology nodes may allow for direct logic drive operation of the 

interconnect components. 
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a. Compact: The dimensions of modulator, detector, switches and delays 

directly contribute to the areal density of interconnects. Small devices also 

enable lower modal volumes, capacitances and reduce the energy per bit for 

modulation and detection. The target sizes of the modulators and detectors 

are less than 1 μm3. 

 
Figure 1.8 a) Silicon Nanophotonic waveguide b) An Ultra small modal 

volume optical cavity [29] 
 
 

 

Figure 1.9 A silicon microring of radius 2.5 microns and modal volume 1 
µm3 embedded in a PIN electrical structure [30] 

 

 

a b
a 



 

17 

b. High speed, Broadband Devices: Higher speed of operation will allow 

large interconnect densities and off set the tuning power to reduce the 

energy/bit. Target speeds are in 10 to 40 Gbps for modulators with switch 

bandwidths to allow switching of 40 Gbit/s signals. 

 

 

Figure 1.10 An 18 Gbit/s single channel modulator in silicon [31] 

 

Figure 1.11 A 40GHz broad band hitless electro-optic switch [32] 
 

c. Multi-wavelength: Multiple wavelength operation is essential for the 

interconnect density scaling since the pitch for the optical waveguides is on 
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the scale of the optical Wavelength Divison Multiplexing (WDM) is ideally 

suited for an on-chip optical interconnect due to complexity, foot print and 

optical insertion loss considerations. This can be arrived at, as follows: in 

general, three basic multiplexing schemes can be conceptualized for an on-

chip optical interconnect  

 

Figure 1.12: Methods for scaling optical interconnect modulation 
bandwidths. Three basic methods a) space division multiplexing (SDM) b) 

Time divison multiplexing (TDM) c) Wavelength division multiplexing 
(WDM). Footprint and waveguide crossings prohibit an aggressive SDM. 

Serialise and deserialise operations limit TDM. 
 

 a) Space Divison Multiplexing (SDM) b) Time Divison Multiplexing (TDM) 

c) Wavelength Divison Multiplexing (WDM). The scalability of SDM and 

TDM are severely limited on an on chip planar integrated circuit. SDM 

scalability is limited by the problem of efficiently crossing multiple 

waveguides, multiple times with low cross talk and insertion losses [34, 35]. 

TDM based systems (relying on free carrier dispersion) are limited 

fundamentally by the speed of carrier response in the semiconductors and 

the foot print and power requirements of serialize and de-serialize circuits. A 

second, critical functionality of WDM can be in routing the signals spatially 

based on the wavelength thus avoiding complex network routing algorithms. 
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Figure 1.13: 50 Gbit/s WDM modulator band formed by 4 , 12.5 Gbit/s 
modulators [33] 

 

d. CMOS Compatibility: The modulators, detectors, switches must operate 

with available voltage and current requirements of digital CMOS to enable 

direct low complexity driving circuits. Sub 1V modulation with current drive 

requirements with in the digital logic current drives can enable easy CMOS 

integration. 

 

Figure 1.14: 3D integrated polysilicon electro-optic modualtor at 1 Gbit/s 
[36] 

 

Figure 1.15: A 4 Gbit/s short range optical interconnect with integrated 
detectors [37] 
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e. Spatially and Spectrally Hitless Devices: 

In order to scale the total bandwidth on chip, it is essential to avoid any 

interference between the optical wavelength channels and signals passing in 

different directions (North, East, South, and West). This has to be achieved 

both spatially to allow for spatial scaling of the interconnect as well as 

spectrally to achieve non-interfering filters.  

 

 

  
 

Figure 1.16: a) A spatially hit-less router (Image Courtesy: Nicolas 
Sherwood), allowing an 4 directional switch [38] b) a spectrally hitless 

broadband switch [32] 
Table 1.3: System Level Features of nanophotonic interconnects 

Property Description Target 

Hit-less Multiple Wavelength 
networks 

Allow more than 100 
Channels 

Temperature 
Robustness 

Large temperature 
robustness 

T Є (0, 100) oC 
ΔT>20 K  

Scalability CAD compatible, 
Design Libraries 

CAD tools & 
 Device Libraries 

Packaging Pin density and 
packaging 

Large I/O Pin density, 
Low cost packaging 
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1.4 Emerging Interconnect Devices & Outstanding problems  

Substantial problems in architectures remain even with the most aggressively 

scaled optics over the next few years [14]. These problems can be broadly 

classified into the following categories: 

 

a. Efficient Tuning of optical devices over large range: Tuning 

becomes a necessity due to a) Fabrication tolerances b) Ambient 

temperature condition changes c) Chip operating condition changes. As we 

saw earlier the total per bit energy is at least :  

 

(20) 

 

The tuning power can form a significant part of the total energy even with 

the most aggressively scaled devices. Hence it is essential to reduce the 

tuning power per nm of the optical devices.  

 

b. Signal Timing control, Clock distribution, Synchronisation: 

Some of these problems pertain to timing control on the chip [41, 42] due 

problems associated with large latency. Timing problem can be closely 

related to generation of synchronised signals over a long range.   

     

c. Isolators and Circulators to protect the input lasers: Isolation of 

the laser sources is essential for any interconnect architecture [43]. Efficient 

low loss isolators and surge protectors can enhance the operational time of 
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the optical sources, reducing the cost and increasing the mean time to failure 

of the microprocessor architecture. 

 

1.4.1 Efficient Tuning of optical devices over large range: 

a. Thermo-optic effect in Silicon : Silicon (like most other 

semiconductors) exhibits a strong positive thermo-optic effect due to the 

sensitivity of band gap to temperature [44], attributed to lattice dilation with 

temperature. The change in the band gap is translated into a change in the 

refractive index following the Moss law for semiconductors [45, 46].  
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Where S=1.49 is a dimensionless coupling constant related to the strength of 

electron-phonon interaction, and  =25.5 meV is the average phonon 

energy, Eg=1.557 is the bandgap at 300 K, n is the refractive index at 300 K. 

(See appendix B, for a detailed description). This corresponds to a 

wavelength shift of 0.1 nm/K in silicon on insulator waveguides. 
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Figure 1.17: a) An integrated micro-heater b) Temperature profile of the 
waveguide cross section (Image Courtesy: Nicolas Sherwood) 

 

b. Thermo-optic tuning in Silicon via micro-heaters: By efficient 

integration of micro-heaters it is possible to achieve sub mW/nm tuning 

efficiency in silicon on insulator substrates [38, 47]. It is important to achieve 

low power tuning to compensate for various factor since the tuning power 

directly adds to the bit energy. The best efficiency shown so far is 550 

μW/nm [47]. However, even the best efficiencies shown so far will average a 

500 fJ/bit tuning power at 10 Gbit/s for tuning range of 10 K. Hence, it is 

of great interest to pursue alternate tuning methods. 

 

c. Controlled Thermo-optic tuning in Silicon via self heating effect: 

Another efficient method for controlling the temperature of a waveguide is 

by using the joule heating from the carriers across a PIN junction to control 

the waveguide temperature [48]. Due to the efficient overlap of the 

generated heat with the waveguide, this method can produce the best heating 

efficiency per mW spent power.  
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Figure 1.18: a) Temperature profile with a microheater integrated on top b) 

Self-heating of PIN junction device [48] 
 

d. Direct tuning by mechanical reconfiguration in Silicon: Optical 

structures can exhibit large sensitivity to mechanical reconfiguration [49]. 

The actuation mechanisms to move the structure can be a direct mechanical 

actuation [49], or an electro-static mechanism [50] or using radiation forces 

to reconfigure the devices [51] which can be extended to large tuning ranges 

using very closely placed optical structures [52] 

 
Figure 1.19: a) Optomechanical structure for large tuning range of photonic 
structures. The small gap allows for very strong perturbation to the optical 

mode creating large tuning range with mW optical powers [G.Weiderhecker, 
S. Manipatruni, M. Lipson CLEO‘10]. 
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Table 1.4: Wide range tuning methods in silicon photonics 

Technique Description Tuning Hold Power 

Thermal  Micro-heaters 550 µW/nm 

Self Heating Joule Heating of  
Active Devices 

500 µW/nm 

Carrier Based Carrier Dispersion  
Compensation 

Limited Range* 

Optomechanical Near Field Perturbation ~ 100 µW/nm 

Electro-mechanical Near Field Perturbation Negligible 

Mechanical Near Field Perturbation Negligible 

 

1.4.2 Timing (Latency) Control on Chip:  

Optics can play a critical role in timing and latency control on chip. The 

ability to control the speed of optical pulses can enable clock and data 

synchronisation for optical interconnects [53].   

 

The following functionalities have been attempted for timing control using 

optics.  

a. Deliver and retain precise timing of pulses [54] 

b. Reducing interconnect latency [55] 

c. Skew and jitter removal [56] 

d. Reduction of number of levels in a clock distribution network [57] 

a. Delays and Pulse Advances on chip using micro-cavities: 

To enable high level functionalities described above, it is essential to start 

with a on chip microphotonic method to delay and advance optical pulses. 
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Coherently coupled optical cavities have been proposed and electrically 

integrated to generate controllable delays and pulse advances [39, 40]. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.20: a) A coherent supermode cavity for slow light applications [39] 
b) electrically integrated slow light device [40] 

 

b. Synchronisation on Chip: Non-linear optomechanical frequency 

pulling for generating low noise, phase locked clock signals 

Synchronisation, the phenomenon of spontaneous emergence of coherence 

among non-linear systems [58] can be exploited to create controlled 

oscillators [59]. Synchronization of on chip systems can enhance the quality 

of clock distribution. However, so far micro-scale mechanical coupling and 

synchronization between cavities has been limited due to the non-

directionality of acoustic radiation, anchor topologies, substrate 

leakage/material phonon losses as well as restrictions of neighbourhood in 
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coupling. Hence, it is of great interest to purse alternate mechanisms for 

coupling and synchronizing distributed micro-mechanical systems. 

 

Figure 1.21: a) Mechanical coupling between micro-opto-mechanical 
oscillator mediated by radiation forces [61] 

A method for radiation force mediated coupling and synchronisation of 

micro-scale mechanical resonators is shown in figure 1.21. Unlike 

mechanical coupling, coupling due to optical radiation forces can be 

achieved when the resonators are separated by a long distance. 

Optomechanical coupling can enable new level of control due to the ability 

to manipulate optical modes over a large range of time scales [60]. It is 

possible to show that long range coupling and synchronisation between 

mechanical cavities can be achieved by coupling the optomechanical devices 

[61]. 
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Figure 1.22: Thesis Organisation  
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1.4.3 Isolation and Non-reciprocity: Isolation and protection of lasers is a  

critical step in any optical interconnect. The cost and complexity to integrate 

isolators and protectors for a large number of wavelength sources for on-

chip and off-chip communication can add up very quickly. 

 

    

Figure 1.23: a) Theoretical proposal for breaking reciprocity on a 
microphotonic chip [62] 

Breaking the reciprocity of light on-chip can lead to an important new class 

of optical devices such as isolators, which are critical for the development of 

photonic systems. Novel optomechanical structures have been proposed to 

utilise the direction dependent mechanical reconfiguration of optical 

structures to create non-reciprocal devices [62]. 

 

1.5. Thesis organisation 

This thesis is organised into three generic sections on 1) Modulators 2) 

Delay Devices 3) Optomechanical Devices. Chapters 2 to 6 concentrate on 

various ways of scaling the modulators to meet the interconnect challenges. 

Chapters 7, 8 concentrate on the delay devices. Chapters 9 and 10 

concentrate on alternate technologies to achieve some of the most 

challenging goals of micro-photonics: i.e Giant tunability, Optical isolation 

and optomechanical synchronisation. 
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Chapter 2 

HIGH SPEED MICRORING MODULATORS IN SILICON : 

Scaling Single Channel Bandwidth 

 

Abstract:  In this section, I show an 18 Gbit/s micro-ring modulator with a 

radius of 6 microns made on a silicon-on-insulator substrate. To the best of 

our knowledge, this is the fastest performance for a micro-ring modulator 

with digital data. 

 

The high speed operation is enabled by engineering the carrier dynamics to 

overcome the restrictions imposed due to carrier lifetime. Together with the 

multiplexing scheme, that will be presented in the next chapter (50 Gbit/s), 

this method enables bandwidth density per micron pitch comparable to 

ITRS predictions for 2020. Based on electro-dynamic simulations, I also 

propose an electro-optic device which operates at the photon lifetime limit 

of the micro-ring cavity.  The proposed device can operate at 40 Gbit/s with 

12 dB extinction ratio and 2.25 fJ/bit/micron-length power dissipation. 

 

 2.1. Introduction   

An electro-optic modulator provides a key functionality for delivering large 

bandwidths using optical interconnects by acting as an interface between 

electronics and optical interconnections. Efficient, compact and robust, 

electro-optic modulators can be critical 1) for enhancing the computational 

functionality of future micro-processors [1] 2) for meeting the energy and 

bandwidth capacity requirements of future datacom/telecom/consumer 

electronic requirements [2]. In this chapter, I will present a modulator which 
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achieves large single channel data rates and modulation density (bandwidth 

encoded per unit footprint area), to make optical interconnects competitive. 

 

An all-silicon electro-optic modulator can play a critical role in making 

silicon photonics a viable candidate for on-chip/off-chip interconnects. 

Since, Silicon lacks the traditional electro-optic functionalities originating 

from electronic non-linearities; carrier dispersion based mechanisms have 

been actively pursued. Carrier-dispersion-based electro-optic modulators on 

silicon-on-insulator (SOI) substrates have been demonstrated based on a 

MOS capacitor [3], a PIN diode [4-7] or a PN junction [8, 9]. Several key 

developments have been reportedly recently in integration of electro-optic 

modulators into electronic circuits. 

 

2.2. Figures-of-Merit of compact electro-optic modulators for 

interconnect applications 

I will first establish figures-of merit for electro-optic modulators from a 

point of view of electronic-photonic integration.  

a. Speed: High data rate modulation for a given single optical 

wavelength is essential for the optical modulators to keep up with the 

growing bandwidth requirements of the electronic chips. However, 

data rates need not be scaled to the limits of device speed since there 

is a penalty associated with data serialization and de-serialization 

operations. 

b. Scalability: The proposed modulator should allow a simple, low 

complexity, low operational overhead multiplexing scheme. As I will 

demonstrate later, a multiplexing scheme is essential for optics to 
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compete with electronic interconnects due stringent requirements of 

bandwidth density per unit pitch length. 

c. Temperature Robustness: The proposed modulator should be 

robust to variations in temperature for operating computational 

environments. 1) Run-time operating temperature shift of 20 K 2) 

Quiescent temperature shifts of >60 K. 

d. Size: Compact modulators with operating areas <10 µm2 are essential 

to meet the modulation rate to footprint Ratio or bandwidth 

capacity/(mm2) for future on-chip optical networks. 

e. Electrical Energy per bit: The total electrical energy of a modulator 

including switching energy, state-hold energy, tuning energy must be 

<100 fJ/bit for meeting the requirements of chip-chip/on-chip 

interconnects. More conservative estimates must include the energy 

from the optical insertion loss/bit and transmitter drive electronics. 

f. Optical Insertion Loss (Optical Energy per bit): The optical 

insertion loss of the modulator (Optical Power level in ON 

state/Laser Power) can emerge as the most dominant factor when the 

electrical energy is optimized. To keep the total system energy low, it 

is essential to consider the optical insertion losses. 

 

In this thesis, over the next few chapters, I will show experimental 

demonstration of high speed (18 Gbit/s), scalable (50 Gbit/s, 4 channel 

WDM), robust (to 20K run time variation), compact (2.5 μm radius), low 

insertion loss (<0.5 dB device in to out), low energy (<10 fJ/bit switching 

energy, <300 fJ/bit total energy) modulators. 
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2.3 Silicon micro-ring electro-optic modulator 

Silicon micro-ring modulators are uniquely suited for the needs of chip-

chip/on-chip optical interconnect. The unique properties of silicon micro-

ring modulators are the size, operating energy, low insertion loss and easy 

adaptability to a wave length division multiplexing scheme. 

 

 

Figure 2.1 SEM image of a 6 µm silicon micro-ring modulator created by 
embedding a micro-ring in a PIN junction. A 50 nm slab is used to 

electrically contact the waveguide for carrier transport. 

 

A silicon micro-ring electro-optic modulator is formed by embedding the 

optical micro-ring cavity in an electrical structure. The electrical structure 

used in this section is a PIN junction integrated around the micro-ring 

cavity. The typical ring radii for the micro-ring modulators are between 6 µm 

and 2.5 µm. The waveguide dimensions forming the cavity are typically 250 

nm X 450. The buried oxide thickness is 2-3 µm with a large silicon substrate 

to provide mechanical support. A 50 nm slab is left in the modulator region 

to allow for electrical contact to the waveguide. Typical quality factors (Q = 

λ0/Δλ) range between 5,000 to 40,000. An SEM image of the device is 

shown in figure 2.1. A schematic of the device is shown in figure 2.2. A 
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second waveguide can be used as a drop port or to control the optical quality 

factor when the waveguide losses are pre-determined by the fabrication 

process. 

 

 

Figure 2.2: Schematic of the micro-ring electro-optic modualtor;  
A second waveguide can be coupled to the micro-ring to adjust the optical 

quality factor for ring for a given cavity intrinsic quality factor 
 

2.4 Modeling a silicon micro-ring electro-optic modulator 

The electro-optic modeling for the modulator consists of analyzing the 

electrical response of the electrical PIN structure and the optical response of 

the micro-cavity. Among other parameters, the key parameters determining 

the response are the cavity photon lifetime and carrier recombination 

lifetime in the wave-guiding region of the diode. 
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The electrical modeling was carried out in SILVACO device simulation 

software [10]. The software models the internal physics of the device by 

numerically solving the Poisson and charge continuity equations. The 

suitability of SILVACO for simulation of these characteristics has been 

established by prior works [11-13]. We included Shockley Read Hall (SRH), 

Auger and direct recombination models. We outline the models and 

parameters used in Table 2.2; the modeling method is shown in figure 2.3. 
Table 2.1 : Typical Device Parameters 

Parameter Typical Value 

Micro-ring Radius 10 - 1.5 µm 

Waveguide Dimensions 450 nm x 250 nm 

Quality Factor (λ0/Δλ) 5000 to 40,000 

Slab Height 50 nm 

Coupling Distance (Edge to Edge) 200 nm 

Carrier Recombination Lifetime (μs) ~ 1 ns -100 ps 

 

The transient optical response of the device is calculated by finite time 

difference iterative solution of the micro-cavity optical field. The free carrier 

dispersion of silicon is modeled by the following equations for the refractive 

index and absorption coefficient for a wavelength of 1.55 μm in silicon [14].  
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where Δn is the change in refractive index, Δα is the change in absorption 

coefficient of intensity, Δn is the injected electron density per cm3, and Δp is 
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the injected hole density per cm3.  The deviation from the classical Drude 

model is included in the 0.8 power dependency on the hole concentration 

which arises due to the non-parabolic shape of the band structure of silicon 

[15]. 
 

 
Figure 2.3: Schematic of the eletro-optic modeling scheme. 

 

2.5 18 Gbit/s Operation: Optimizing the speed of a silicon micro-ring 

electro-optic modulator 

The high speed operation of the carrier-injection modulator is enabled by 

engineering the carrier dynamics to achieve optimal charge injection into the 

device. In this section, I describe the process through which we can 

overcome the speed limits imposed by carrier dynamics on injection mode 

modulators. 
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Table 2.2 : Electro-optic Simulation Parameters 

Electrical Parameter Typical Value 

Intrinsic region doping 5x1015/cm3 

N region doping 1019/cm3 

P region doping 1019/cm3 

N region width 600 nm 

Waveguide dimensions  

(width x height) 

 

450 nm x 250 nm 

Bulk silicon electron lifetime (μs) 
3 [16] 

Bulk silicon hole lifetime (μs) 
10 [16] 

Carrier surface recombination velocity 

(cm/s) 

104 (un-passivated), 

100 (passivated) [17, 18] 

Carrier surface recombination velocity 

(cm/s) 

104  (un-passivated), 

100 (passivated) [17, 18] 

Interface trap density (cm-2  eV-1 ) 
1010  [18] 
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Figure 2.4: Electro-optic response of the micro-ring modualtor; Free carriers 
in the waveguide are shown in dotted line.  

 

The limitation imposed by carrier dynamics over the operation of carrier 

injection modulators can be understood as follows: A large turn-on voltage 

is necessary to enable fast OFF-State to ON-State optical transitions. 

However, large ON-state voltage leads to excessive injection of the free-

carriers. This excessive free carrier concentration reduces the speed of the 

response due to mobility degradation as well as the requirement to extract 

the excessive charge. The electro-optic response of the micro-ring modulator 

to a 1 ns voltage pulse of amplitude 1.25 V is shown in figure 2.4. We see 

injected carrier density of 5X1017/cm3 for electrons and holes.  

 

The electro-optic turn-on transient of the modulator is shown in Figure 2.5. 

At an applied voltage of 1.25 V, one can see that the optical turn-on can be 

achieved at 50 ps from the beginning of the transients. To achieve, a 25 ps 
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turn-on time, we can increase the applied voltage to 2.5 V. However, this 

significantly affects the turn-off transients, limiting the maximum operation 

speed of the modulator. 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 2.5: The transient optical response is shown by the solid line. The 
transient at the leading edge is due to the interference between light leaking 

from the cavity with the light coupled straight through the cavity 

 

As the electro-optic turn ON voltage is increased to obtain faster turn-ON, 

time taken to extract the free carriers increases (due to mobility degradation) 

leading to limited speed. We overcome this problem by decoupling the rise 

and fall time transients.  

 

We achieve simultaneous fast turn-ON and fast turn-OFF by controlling the 

amount of charge injected into the modulator. By limiting, the injected 

charge and applied voltage to a value sufficient for fast turn-on, we can 

decouple the turn-ON and turn-OFF transients. 
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Figure 2.6: Time taken to extract the free carriers for a given applied electric 
field  

We achieve control over the injected charge by engineering the applied 

voltage into a pre-pulsed Non-Return-Zero pre-pulsed form. The high speed 

pulse shaping of the applied voltage is achieved as follows. 

 
Figure 2.7: Driving mechanism for decoupling carrier rise and fall times of 

an injection modulator   
 

We implemented a dual-edge pre-emphasis with sub bit period driving 

circuitry using discrete micro-wave components. For an analog electronic 

implementation of a pre-emphasis method on silicon at 90 nm technology 

node please see [1], Page 239. We generated the pre-pulse signals suing an 

impulse forming network (IFN 5201 [39]) with a transfer function 
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(Vout=Tc * dVin/dt), where Tc is the derivative time constant.  The digital 

drive signals were pre-amplified using two modulator drivers (JDSU H301) 

of similar gain and dispersion graphs to amplify the signal in each of the 

arms. We also used two micrometer controlled low insertion loss 20 GHz 

delay lines (for e.g SHF 2000DEL) to match the signals in time. The signals 

were then added with a passive 6 dB coupler. Since, the contact resistance of 

the PIN diodes is only 500 Ω, we have eliminated the final amplifying stage. 

However, a 20 Gbps amplifier with a large swing voltage (SHF 826 H [40]) 

can be used if the contact resistance were to be higher. The eye diagrams and 

bit patterns at 18 Gbit/s are shown below : 

 

 

 

 

 

 
 
 

Figure 2.8: Decoupling carrier rise and fall times of an injection modulator  
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Figure 2.9: 40 Gbit/s operation  with pre-pulsing  
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  Figure 2.10: a) Measured 18 Gbit/s Modulated Eye Diagram; b) Measured 

optical bit-pattern at 18 Gbit/s [19]. This operation speed is the fastest 

digital modulation shown in a micro-ring to date [19] 

  

2.6 Achieving Controlled Charge Injection at the Device Level: Novel 

modulator geometry for ultra high speed operation 

In this section, I extend the idea of controlled charge injection to a device 

level [20]. I propose an electro-optic device that has an inbuilt charge 

controlled injection. The proposed device consists of a waveguide embedded 

in a PINIP device (see Figure. 2.12). The PINIP device provides high speed 

transitions of carrier density in the waveguide. The refractive index of the 

waveguide is modulated due to the carrier dispersion effect in silicon. The 

device cross section is shown in Figure 2.11. 
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Figure. 2.11 Proposed PINIP device; the device is symmetric about the 

central dotted line. 

 
 Figure. 2.12  A ring resonator integrated into a PINIP structure 
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 Figure. 2.13 Carrier Density in the center of the ridge, Figure. 2.b Anode 

Current 

The proposed PINIP device consists of two adjacent diodes in opposite 

directions. The charge transport takes place only during the turn-on and 

turn-off times of the diodes resulting in fast carrier density changes. The 

turn-on and turn-off times of the diodes are determined by the time taken 

for the carriers to form the depletion region as they are swept under high 
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electric fields. The carriers are accelerated to the carrier terminal velocity in 

silicon (107 cm/s) under electric fields exceeding 104 V/cm. By using a 

symmetric electrical structure for the diodes we produce fast transients 

during the build up of and depletion of carriers. 

 

The proposed PINIP device operates as a high field transport device 

where carriers are accelerated through the intrinsic region at the saturation 

velocity in silicon. This structure has been traditionally used for study of high 

field behavior of electrons (NIPIN) and holes (PINIP) [21].  Here we 

propose to use the high field, near saturation velocity transport in PINIP for 

electro-optic modulation in an SOI photonic device. One of the two ridges 

shown in Figure. 2.12 is used for guiding light; the other ridge is used as a 

charge reciprocating structure.  

 

The double ridge structure creates symmetry in the electrical response of 

the PINIP device. The charge injecting regions are connected to the strip 

waveguide through a 50 nm thick slab of intrinsic silicon. The entire 

structure is clad in SiO2. The charge injecting regions have uniform doping 

concentrations of 1019/cm3. The wave guiding regions are slightly p doped 

with a typical dopant concentration of 5x1016/cm3 so that the carrier density 

changes are unipolar. This significantly decouples the performance of the 

device from the time response of recombination of electrons and holes. This 

is important in order to avoid pattern dependency and timing jitter 

associated with carrier dispersion devices due to recombination effects. 

 



 

52 

We simulated the transient electrical and optical characteristics of the 

device. The electrical transient characteristics show that the PINIP device 

conducts only during the transition time of the applied voltage thus creating 

fast electrical transitions. In Figure. 2.13 (a) we show the carrier density at 

the center of the waveguide for an applied voltage of ± 3 V with 10 ps rise 

and 15 ps fall times. In Figure. 2.13 (b) we show the anode current per 

micron length of the device.  

 

The asymmetry in the rise and fall times is due to the non- uniform 

distribution of the electric field in the intrinsic region. The rise time is 

determined by the transit time of carriers from the thin slab region to the 

center of the waveguide region. The electric field in the slab region is higher 

than the electric field in the waveguide region, leading to a faster rise time 

(10 ps) as compared to the fall time. 

 

2.6.1. High bit rate operation 

We have simulated the structure and showed electro-optic modulation at 40 

Gbit/s in an NRZ scheme with a resonator of quality factor 5,000.  A 

relatively low quality factor resonator is used since in the absence of 

electrical fall time limitations, the speed of modulation is now given only by 

the cavity ring–down time.  
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Figure. 2.17. Optical output for a Non-Return to Zero coded bit stream at 

40 Gbit/s. 

 

The proposed device extends the speed of carrier injection modulators from 

a few Gb/s to as high as 40 Gb/s. Figure 2.17 shows the applied voltage and 

corresponding optical transmission profile for an arbitrary bit sequence 

modulated with an extinction ratio (defined as 10 log10 (Phigh/Plow)) of 12 dB 

at 40 Gbit/s. We assumed a loss of 8 dB/cm in the ring under critical 

coupling conditions. The insertion loss is 3 dB at 40 Gbit/s with a peak 

injection of 5 x 1016 cm-3. The insertion loss and extinction ratio can be 

improved by optimizing the doping profiles or by designing the filter shape 

using multiple rings [28, 29] or a single add-drop ring filter [30]. 
 

The maximum sequence of ones (logic high bits) that the device can 

modulate is >>1000 bits. The length of identical bit sequence is limited only 

by the storage time of carriers determined by the leakage current of the 

device making this an ideal component for on- chip modulation for intra 

chip communication. The estimated power dissipation of the device is 2.25 
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fJ/bit/micron length. The energy per bit is estimated from the total charge 

injected per bit per micron length of the waveguide (0.9 fC/bit/micron) 

multiplied by the switching voltage (5 V) and the bit transition probability 

(0.5). The modulator does not draw current while the state is being held 

except for the parasitic leakage current. This is in contrast to PIN devices 

where the recombination of carriers has to be compensated with a steady 

state current inversely proportional to the carrier lifetime. The compact size 

also avoids the need for traveling wave electrodes and reduces the drive 

current requirements. The modulator can be driven by an analog CMOS 

driving circuit made on the same SOI substrate [31]. Hence, the PINIP 

device can increase the modulation rate beyond 40 Gbit/s limited only by 

the photon lifetime of the cavity. The device shows electrical transitions of 

10 ps which is close to the fundamental limit imposed by carrier saturation 

velocity in silicon for the dimensions dictated by the index contrast in an 

SOI system. We show 40 Gbit/s operation with a 12 dB extinction ratio and 

2.25 fJ/micron energy dissipated per bit in a 10 micron-sized device limited 

only by the photon lifetime of the structure. 

 

2.7. Conclusion 

In summary, methods for increasing the speed of operation of silicon micro-

ring modulators are presented here. I have shown a 18 Gbit/s modulation in 

a silicon micro ring as well as a novel device to achieve 10 ps transition times 

allowing for ultra high speed modulation limited only by the saturation 

velocity of free carriers in silicon.  
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Chapter 3 

50 GBIT/S WAVELENGTH DIVISON MULTIPLEXING USING 

SILICON MICRORING MODULATORS:  

Scaling the interconnect density of nanophotonic interconnects 

 

 

Abstract— we demonstrate 50 Gbit/s modulation using four silicon micro-

ring modulators within a footprint of 500 (µm)2. This is the highest total 

modulation capacity shown in silicon using compact micro-ring modulators. 

 

3.1 Scaling the data rates of nano-photonic interconnects 

On-chip optical networks in silicon are evolving as enablers for highly 

scalable multi-core multi-processors [1-6]. Data rate of interconnects must 

scale aggressively to meet the bandwidth density (Gbit/s·micron) and 

footprint requirements of on-chip networks [7-8]. Hence, it is of great 

interest to pursue scaling techniques for bandwidths achievable on a single 

optical link using compact modulators. 

 

Here, we show 50 Gbit/s per waveguide modulation capacity in a silicon 

photonics platform with a footprint of less than 500 (µm)2. We use four 

wavelength specific silicon micro-ring based modulators each operating at 

12.5 Gbit/s. Multi Gbit/s silicon electro-optic modulators have been 

demonstrated based on a MOS capacitor [9], a PIN diode [10-13] or a PN 

junction [14-16]. However, single electro-optic device data rates are 

fundamentally limited owing to carrier transport [17], photon lifetime [18] 
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and signal integrity limits [19]. Here, we extend the high speed modulation 

abilities of compact silicon microrings to multiple wavelengths to scale the 

bandwidth per waveguide beyond single device limits. 

 

We show an interconnect bandwidth density (bandwidth of 

interconnect/width of interconnect) of ~25 Gbit/s·micron (50 Gbit/s/2 

μm). This is several times the bandwidth density requirements for global 

interconnects for a 32 nm node in 2015 as per ITRS (assuming 96 nm wide 

metal interconnects at 2 Gbit/s) [1]. This is also exceeds the bandwidth 

density of optimally repeated global on-chip electrical interconnects today by 

at least an order of magnitude [20, 21]. 

 

The modulation rate to footprint ratio, a critical figure of merit for optical 

networks on chip, of this scheme is three orders of magnitude higher than 

previously demonstrated by using a parallel bank of Mach-Zhender 

modulators [22]. These modulation rate to foot print ratios (100 Tbit/s· 

mm2) can meet the aggressive real estate demands for optical networks for 

multi-chip multi-processors [4]. 

 

3.2 Wavelength Divison Multiplexing for On-chip Interconnects 

Wavelength Divison Multiplexing (WDM) is ideally suited for an on-chip 

optical interconnect due to complexity, foot print and implementation 

considerations. This can be arrived at, as follows: in general, three basic 

multiplexing schemes can be conceptualized for an on-chip optical 

interconnect viz. a) Space Divison Multiplexing (SDM) b) Time Divison 
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Multiplexing (TDM) c) Wavelength Divison Multiplexing (WDM). The 

scalability of SDM and TDM are severely limited on an on chip planar 

integrated circuit. SDM scalability is limited by the problem of efficiently 

crossing multiple waveguides, multiple times with low cross talk and 

insertion losses [23, 24]. TDM based systems are limited fundamentally by 

the speed of response of the semiconductors [17] and the foot print and 

power requirements of serialize and de-serialize circuits. 

 
Figure 3.1: Methods for scaling optical interconnect modulation bandwidths. 
Three basic methods a) space division multiplexing (SDM) b) Time divison 
multiplexing (TDM) c) Wavelength division multiplexing (WDM). Footprint 

and waveguide crossings prohibit an aggressive SDM. Serialise and 
deserialise operations limit TDM. 

 

Figure 3.2: SEM image of a 6 µm silicon micro-ring modulator created by 
embedding a micro-ring in a PIN junction.  
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Figure 3.3: 4 microring modulators in an array 

 

 

 

 

 

 

Figure 3.4: a) Schematic of 4 microring modulators coupled to a single 
waveguide. b) Transmission spectra of 4 microring modulators for quasi-TE 

polarised light. 

 

Silicon microrings are well suited for WDM due to the wavelength selectivity 
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of the microrings [25] A silicon micro-ring modulator utilizes free carrier 

dispersion of silicon to modulate an optical carrier of a specific wavelength 

decided by the ring geometry. A complete WDM interconnect can be 

implemented by using a resonator embedded detector. 

 

 

 

 

 

Figure 3.5: a) Driving mechanism for decoupling carrier rise and fall times of 
an injection modulator  b)  Carrier density dynamics inside the silicon 

waveguide b) Driving voltage applied to the modulator with a peak-peak 
voltage swing of  3V. 

We use micro-rings of varying radii to obtain 4 modulators operating at 

distinct wavelengths. The radii of the rings are controlled through fabrication 

of sets of 20, 40 and 60 nm differences in circumference (Figure. 3). These 

microrings are defined on an SOI substrate. The top silicon layer (260 nm 

thick) is used for the passive waveguides and the electro-optical microring 

modulator. The patterning steps are all performed with electron-beam 
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lithography (JEOL 9300). We defined the silicon waveguides and the ring 

resonator lithographically and then partially etched the silicon layer to a 

depth of 210 nm. Another lithography step was used to cover the modulator 

region and continue the silicon etch, leaving the 50 nm slab only around the 

modulator for the PIN diodes. After the etching we deposited 20 nm SiO2 

for silicon passivation. Next, we performed the implantation steps for the p-

region (outside the rings, BF2, dose 3X1015/cm2 at 45 keV) and n-region 

(inside the ring, Phosphorous, dose 2X1015/cm2 at xx) respectively. A 

relatively low temperature anneal (650oC Rapid Thermal Anneal (RTA) for 

120s) was subsequently used to activate the dopants. Nickel Silicide was then 

used for the electrical contacts to the modulator, with 15 nm evaporated 

nickel and 50 s RTA at 550oC. We then deposited 1 µm SiO2 top cladding, 

and patterned via holes and contact pads connecting to the electrodes of the 

modulator and detector respectively. The sample was then diced and facet-

polished to sub-wavelength roughness for testing.  

Each modulator is driven by a pre-emphasis method to decouple the 

injection and extraction times of the device [26].  The driving scheme and 

applied pre-pulsed signals are shown in figure 4 a. A peak to peak driving 

voltage of 3 V is used to obtain 12.5 Gbit/s operation on each of the four 

devices. Figure 4 b shows the carrier density dynamics inside the waveguide 

simulated using SILVACO device simulator [18]. One can see that pre-

pulsing allows for both a fast turn-on as well as a fast turn-off.  
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Figure 3.6: Optical eye diagrams at 12.5 Gbit/s for 4 micro-ring modulators 
at a)1562.29  nm b)1558.14 nm  c)1554.97  nm  d) 1550.74  nm. The 

variances in the optical high and low state and difference in powers are 
measured to estimated the quality factor of the eye diagrams. 

We implemented a dual-edge pre-emphasis with sub bit period driving 

circuitry using discrete micro-wave components. For an analog electronic 

implementation of a pre-emphasis method on silicon at 90 nm technology 

node please see [7], Page 239. We generated the pre-pulse signals suing an 

impulse forming network (IFN 5201 [29]) with a transfer function 

(Vout=Tc * dVin/dt), where Tc is the derivative time constant.  The digital 

drive signals were pre-amplified using two modulator drivers (JDSU H301) 

of similar gain and dispersion graphs to amplify the signal in each of the 

arms. We also used two micrometer controlled low insertion loss 20 GHz 

delay lines (for e.g SHF 2000DEL) to match the signals in time. The signals 

were then added with a passive 6 dB coupler. Since, the contact resistance of 

a 

b 

c 
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the PIN diodes is only 500 Ω, we have eliminated the final amplifying stage. 

However, a 20 Gbps amplifier with a large swing voltage (SHF 826 H [30]) 

can be used if the contact resistance were to be higher. We drove the 

modulators with 50 Ohm terminated high speed probes. Each modulator is 

driven by a pre-emphasis method to decouple the injection and extraction 

times of the device. A peak to peak driving voltage of 3 V is used to obtain 

12.5 Gbit/s operations on each of the four devices. We note that 3 V drive 

voltage pre-emphasized signals have been achieved with 1.8V driver supply 

voltage at 60 nm technology node for high speed operation [1]. The driver 

biases & pre-emphasis levels are adjusted for each modulator. The extinction 

ratios for the four-rings are given by the extinction ratios of the static optical 

transmission measurements (Figure 4). 

 

3.3 Conclusion 

We show optical modulation at 4 different wavelengths each at 12.5 Gbit/s. 

The quality factors of the eye diagrams are estimated 

as )( 1212  Q ,7.58, 7.36, 8.64, 9.80 all corresponding to very low bit 

error rates [31,32]. In conclusion, we show 50 Gbit/s modulation using four 

silicon microring modulators within a foot print of 500 (µm)2. We show 

interconnect bandwidth density of 25 Gbit/s·micron and modulation 

bandwidth density of 100 Tbit/s· micron2 , both are critical figures of merit 

for optical networks on chip. With recent developments towards thermally 

robust resonant modulators [33-36], scalable modulation methods based on 

micro-rings may meet the requirements of on-chip optical networks [1-8]. 
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Chapter 4 

150 mVpp, 2.5 µm SILICON MICRO-RING MODULATOR: 

Scaling the voltage and Areal bandwidth density 

 

Abstract: We demonstrate ultra-low swing voltage (150 mV peak-peak) 

electro-optic modulation in a 2.5 µm radius silicon ring modulator. These 

results can enable low complexity direct CMOS digital logic driven 

modulators. These results can enable low complexity drivers using standard 

CMOS digital drive electronics employing low rail voltages. This is the 

smallest swing voltage modulation on silicon to-date. 

 

4.1 Introduction 

Integration of silicon photonic components with CMOS electronics is an 

important requirement for on-chip & chip-chip optical interconnect 

applications [1-7]. In particular, silicon electro-optic modulator operating 

voltages must scale aggressively as rail voltages (Vdd) for digital VLSI are 

scaled to 600 mV in future CMOS platforms [8-11]. Hence, it is of great 

interest to pursue low voltage modulation methods that are silicon 

compatible. A low voltage swing modulation scheme can significantly reduce 

the total transmitter energy and footprint by reducing the drive electronic 

complexity compared to the existing schemes [12]. In this letter, we show 

GHz modulation in a 2.5 µm radius silicon micro-ring, with only 150 mV 

peak-peak drive voltage and an electro-optic modal volume of only 2 µm3. 
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4.2 Operating Principle for Low Voltage Switching  

We achieve the low drive voltage and ultra low switching energy operation 

by operating the modulator near an optimum charge injection efficiency 

point of the electro-optic device. This feature is unique to PIN injection 

modulators enabling ultra low voltage operation in contrast with other 

techniques for electro-optic structures [13-20]. We support the proposed 

scheme via electro-optic simulations and analytic models matched closely 

with transient/steady state modulator measurements. The ultra low driving 

voltage scheme, combined with the small size of the micro-ring (2.5 µm) can 

enable low RF switching powers driven directly by scaled CMOS digital 

logic.  

 

4.3 Ultra Low Voltage Operation 

We use a micro-ring of radius 2.5 µm, close to the bending loss limited 

foot-print of micro-rings [21]. The micro-ring is formed with a waveguide of 

width 500 nm coupled to 350 nm wide silicon waveguides (figure 1.a). The 

micro-ring modulators are fabricated on silicon on insulator substrate. The 

top silicon layer (260 nm thick) is used for the passive waveguides and the 

electro-optic micro-ring modulator. The patterning steps are all performed 

with electron-beam lithography (JEOL 9300). We defined the silicon 

waveguides and the ring resonator and partially etched the silicon layer to a 

depth of 210 nm. Another lithography step was used to cover the modulator 

region and continue the silicon etch, leaving the 50 nm slab only around the 

modulator for the PIN diodes. After the etching, we deposited 20 nm SiO2 

for silicon passivation. Next, we performed the implantation steps for the p-
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region (outside the rings, BF2, dose 3X1015/cm2 at 45 keV) and n-region 

(inside the ring, Phosphorous, dose 2X1015/cm2 at 33 keV) respectively. A 

relatively low temperature anneal (650oC Rapid Thermal Anneal (RTA) for 

120s) was subsequently used to activate the dopants. Nickel Silicide was then 

used for the electrical contacts to the modulator, with 15 nm evaporated 

nickel and 50 s rapid thermal anneal (RTA) at 550oC. We then deposited 1 

µm SiO2 top cladding, and patterned vias and contact pads connecting to the 

electrodes of the modulator. The sample was then diced and facet-polished 

to sub-wavelength roughness for testing.  The device and NRZ modulation 

waveforms are shown in Figure 4.1 where we drove the modulator with 

Non-Return-to-Zero data at 4 Gbit/s with a peak-peak voltage of 1.4 V 

biased at 0.5 V. 

Figure. 4.1 a : SEM image of a 2.5 µm radius silicon micro-ring modulator 
created by embedding a micro-ring in a PIN junction. b) Optical 

Transmission Spectrum of the Micro-ring c) NRZ optical eye diagrams at 4 
Gbps c) NRZ electrical driving signal at 1.4 V peak-peak biased at 0.5 V. 
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Figure. 4.2 a: Measured and simulated device I-V characteristics (red). b: 
Electron and hole concentrations in the waveguide (blue) c: Carrier injection 

per unit voltage (derivative of (b) with respect to voltage) 
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We achieve very low voltage operation of PIN injection modulators by 

operating the modulator near an optimum charge injection point. The 

presence of optimum charge injection region enabling ultra low voltage 

operation can be understood by considering the carrier lifetimes in forward 

biased PIN electro-optic modulator. Figure 4.2.a shows the experimental and 

simulated IV characteristics of the micro-ring modulator. The injected 

charge density ( dvdQ ) in the waveguide centre is shown in Figure 4.2.b. 
 

We explain the presence of optimum charge injection region via an analytic 

model supported by electro-optic device simulations matched with measured 

data. The electro-optic simulations are in-turn validated against steady state 

and transient performance of the modulator. The injected charge into the 

PIN diode can be extracted from the non-linear governing equation: 
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Where I is the steady state current through the PIN diode, R is the total 

effective series resistance, k, Boltzmann constant, α the non-ideality 

coefficient of the diode, I0 is the reverse saturation current. In figure 2, we 

show the analytical solution of the above equation along with the simulated 

and measured IV data. The fitting parameters are I0 =90 nA, Vt=0.5 V, α = 

0.62, R=250 Ω. The injected charge density can be obtained from the V(I) 

characteristics following the non-linear governing equation for the steady 

state injected carrier density: 
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Where 0 is the carrier life time at low carrier densities, n is the power law 

dependence of the carrier lifetime with injected carrier density, Q0 is a fitting 

parameter determined by the dependence of carrier lifetime on the minority 

carrier concentration in the PIN diode. We found n to be 1, indicating a 

recombination process that scales proportional to the carrier density [22]. 

The above equation can be obtained by the differential equation for injected 

charge in the diode at steady state by setting 0)(  recombItQdtdQ  . The 

results from equations (1) and (2) can be combined to obtain the Q (V) and, 

dvdQ shown in figure 2 c.  
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          (3) 

Where, G(V) is the conductance of the diode obtained from (1). The 

calculated and simulated charge densities show excellent agreement to verify 

our assumptions. By biasing the modulator at high injection efficiency points 

(near the maxima of (3)), one can exploit the high charge injection (fC/mV) 

of the device to achieve a low voltage operation of the device.  

We simulated the transient carrier dynamics of the electro-optic 

modulator to verify the principle of operation. The electrical modelling was 

carried out in SILVACO ATLAS device simulation software and the optical 

modulation was calculated using an optical transmission matrix approach 

[23]. The software models the internal physics of the device by solving the 

Poisson equation and the charge continuity equation numerically. We 

included Shockley Read Hall (SRH), Auger, Direct recombination models. 

We assumed an interface trap density of 1010/cm2/eV and an interface 
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recombination rate of 104cm/s. The surface recombination rate of silicon is 

of the order of 104 cm/s for un-passivated surfaces and 100 cm/s for 

passivated surfaces. A detailed treatment of electro-optic modelling is 

presented in [23]. A good agreement between the measured and simulated 

waveforms can be observed in figure 4.3. 
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Figure 4.3: Measured and simulated transient electro-optic device 
characteristics for the proposed operating conditions. The applied voltage is 

a square wave from 0.96 to 1.11 V. 

We demonstrate 1 Gbit/s modulation with a peak-peak drive voltage of only 

150 mV. The optical waveform at 1 Gbit/s NRZ is shown in figure 4.4 a. 

Eye diagrams corresponding to the drive voltage is shown in figure 4.4 b. 

We drive the electro-optic modulator directly from the pattern generator 

using a 20 dB attenuator to obtain 150 mV voltage swing. A bias-tee is used 

to add a variable DC voltage to optimize the optical waveforms. The driving 

signal is terminated in a 50 ohm termination at the end of the high speed to 

probes to avoid reflections. A 150 mV voltage swing with a low voltage level 
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of  960 mV were used to obtain clear waveforms. The optical eye diagram is 

shown in figure 4.4 b showing an open eye. We observe symmetric rise and 

fall times of ~ 1 ns corresponding to the recombination life time in silicon 

waveguides determined predominantly by the surface recombination 

processes.  

Figure 4.4: Eye diagrams with 150 mV drive voltage at 1 Gbit/s for 2.5 µm 
micro-ring modulator a) Optical eye diagram b) RF eye diagram with a swing 

voltage of 150 mV and a bias point at 0.96 V. 

We estimate the RF switching power consumed by the device as 7.9 fJ/bit 

excluding the state hold power. The estimate of the switching power is 

arrived at as follows: The total charge injection times voltage swing provides 

the switching energy per injection. However, since 0-0, 0-1, 1-0, 1-1 

transitions are all equally likely in a pseudo-random signal, the switching 

energy per bit is given by 1/4th of the switching energy per transition. The 

total charge injection for switching is estimated from the optical quality 
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factor (Q ~ 3000), group index (ng = 4.262) and modal volume of the cavity 

(Θ = 1.96 µm3) and free carrier dispersion in silicon [22]. The refractive 

index shift required for full optical switching across the ring is obtained from 

Δn=ng/Qopt=1.42X10-3. This corresponds to an injected charge density of 

ρ=3.9X1017 cm-3. Hence the total charge injected is Φ= 251 fC at each 0-1 

transition. The energy per injection is therefore 37.7 fJ. However, since 0-0, 

0-1, 1-0, 1-1 transitions are all equally likely in a pseudorandom signal [17], 

the switching energy per bit is given by 7.9 fJ/bit. However, we note that the 

total energy of the injection modulator is dominated by the DC power 

consumption given by VonIon=VonQ/τrecomb . 

 

The proposed scheme can enable high speed direct digital logic driven 

modulators that can be operated with a single stage (or tapered) inverters. 

We estimated the switching speeds of a scaled single stage digital logic driver 

for future technology nodes. The maximum switching speed (fs=1/ts) for a 

single stage inverter (Figure 4.5) [26] driven by minimum sized transistors is 

estimated as: 
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   (4)  

Where Cn,Vn, In are the capacitance, voltage and current through minimum 

sized transistor at a given technology node, Imodulator is the peak current 

through the modulator. We plot the maximum switching speed of the direct 

logic drive as a function of the drive current for the modulator in figure 5. 

Gate lengths, voltages and delays are taken from ITRS 2009, Table PIDS2 : 

High Performance Logic Technology Requirements [27]. One can clearly see 
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that at 1 mA current levels for the present modulator switching speeds 

approaching 10 GHz can be realised using direct CMOS digital logic drives. 
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Figure 4.5: Switching frequency of a single staged inverter driven directly 
with a digital logic level as a function of the drive current. 
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Figure 4.6: Simulation of 10 Gbps electro-optic modulator with 500 mVpp 
drive voltage. The SRH recombination rate is increased such that the 

effective carrier lifetime is 100 ps. The diode IV forward bias resistance is 
110 ohm. The ring resonator loaded Q is 25,000, corresponding to a modest 

propagation loss of 17 dB/cm and photon lifetime of 21 ps. 
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The estimated scaled NMOSFET channel width for a 1 mA drive current is 

expected to be 

   nodesatd
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    (5) 

assuming an Id,sat of 664 μA/µm at a 22 nm CMOS technology node [8]. 

This implies a drive transistor size of 1.5 µm which can scale down with 

current densities [8]. This reduction in footprint, driver energy, complexity 

may enable easy integration with CMOS drive electronics. By controlling the 

carrier lifetime [23], we expect that 10 Gbps, sub 500 mV, direct CMOS 

digital logic driven modulation will be feasible. In figure 4.6, we show the 

simulated electro-optic modulation of an electro-optic modulator at 10 Gbps 

operating with a 500 mV voltage swing. We note that the peak currents were 

3 mA, which correspond to a scaled digital inverter cut –off bandwidth of 10 

GHz in a 16 nm CMOS node. 

 

In conclusion, we demonstrate ultra-low drive voltage (150 mV) operation 

of carrier injection micro ring modulators in Gbit/s regime. This low voltage 

driving scheme allows for direct digital logic driven modulators driven with 

micron sized transistors. To the best of our knowledge this is the smallest 

operating voltage (150 mV) for a GHz silicon modulator to date. The mode 

volume (2 µm3) & foot-print (~20 µm2) of the modulator is also the smallest 

to date for a carrier injection micro-ring silicon modulator. The ability to 

scale the voltages of modulators down to few 100 mV may enable 

compatibility with digital CMOS technologies beyond 22 nm. 
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Chapter 5 

1000 GBIT.KM/S TRANSMISSION USING  

SILICON MICRORING MODULATORS:  

Scaling the length of the interconnects 

Abstract: We report error free data transmission at 12.5 Gbit/s over 80 km 

distance using silicon micro-ring modulators. We present the resulting power 

penalties for varying propagation distances, induced chromatic dispersions, 

and bandwidth-distance products. These results may enable silicon photonic 

interconnects for next-generation high-performance chip multi-processors, 

datacom and telecom optical transmission. 

 

5.1 Introduction 

Silicon photonics is emerging as solution for bandwidth and energy 

challenges of future interconnect applications [1-7]. Compatibility with 

existing CMOS fabrication processes [1, 3, 8, 9], possibility for large scale 

photonic-electronic integration [1, 3], ultra small foot-prints [10-12] and low 

power consumption [9-12] can make silicon photonics the platform of 

choice for high performance computing, datacom and multimedia 

applications. Recently, several high performance silicon photonic 

interconnect devices such as modulators [9-19], switches [11, 20-22], and Ge 

integrated photo-detectors [1, 23-32] have been demonstrated. However, the 

functionalities of silicon photonics for medium and long-haul optical 

communications remain largely unexplored [33-35]. Hence, it is of great 

interest to study the suitability of silicon photonic components for medium 

and long-haul optical communications. 
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In this work, to the best of our knowledge, we present the first 

experimental demonstration of error free, long-haul (80 km) transmission 

using high speed (12.5 Gbit/s) silicon micro-ring  modulator (6 μm radius) 

with a bandwidth X distance product of 1000 Gbit.km/s. We show 1 dB 

dispersion power penalty at 600 Gbit.km/s comparable to telecom class 

modulators. We also measure the bit error rates and present the resulting 

power penalties for varying propagation distances, induced chromatic 

dispersions, and bandwidth-distance products.  

 

We also compare the performance of the micro-ring modulators with 

state-of-the-art commercial modulators. Towards this goal, we demonstrate, 

for the first time to our knowledge, error-free operation of a silicon micro-

ring resonator electro-optic modulator for modulation rates up to 12.5 

Gb/s, and draw a comparison of this device with a commercial lithium 

Niobate (LiNbO3) Mach-Zehnder electro-optic modulator. Since, all silicon 

photonic network-on-chip architectures proposed to date have employed 

silicon micro-ring resonator modulators [1, 3-7]; these measurements may 

enable more accurate physical layer models for optically connected high 

performance computers [36, 37]. 

 

5.2 Bit Error Rate Performance of Silicon Micro-ring Modulators  

We fabricated a silicon micro-ring modulator formed by a high quality 

silicon micro-ring surrounded by a PIN carrier injection device [14]. The 

device comprises a micro-ring resonator with a 12-μm diameter coupled to a 

straight waveguide, which has input and output ports (Figure. 1d). The 

waveguides are 450-nm wide and 260-nm tall. The waveguide of the micro-
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ring has a 50-nm slab that is doped to form the PIN diode structure, with 

nickel silicide for the electrical contacts. The silicon micro-ring resonator 

electro-optic modulator discussed here was fabricated using electron-beam 

lithography and reactive-ion etching. For details of the exact fabrication 

process used please see [38]. The non-return-to-zero (NRZ) on-off-keyed 

(OOK) modulation signal is encoded onto a wavelength channel by an 

incoming continuous wave (CW) source passing in and out of resonance of 

the micro-ring resonator. This resonance shift is caused by the plasma-

dispersion effect from injecting and extracting electrical carriers through the 

PIN diode. To achieve high modulation rates that are typically limited by 

carrier lifetimes, the modulator is driven using a pre-emphasis method [1, 

14]. 

We first evaluate the silicon microring modulator at varying modulation 

rates by examining the output modulation temporal response (Figure. 5.2a–

d). The experimental setup is depicted in Figure. 5.1a and described in the 

Methods section. This is accomplished by setting the clock rate to 5, 7.5, 10, 

and 12.5 GHz, electrically driving the microring modulator with 5-, 7.5-, 10-, 

and 12.5-Gb/s Non Return to Zero (NRZ) data. The electro-optic response 

of the microring modulator then encodes the incoming light with the 

electrical data. Once that data signal leaves the chip, the eye diagrams of the 

optical signals are measured (Figure. 5.2a–d). The resulting eye diagrams 

show clear openings, and degrade as we drive the modulator at higher 

modulation rates, resulting from electrical carrier lifetime limitations and 

transient response of the micro-ring resonator and the closing of the 

temporal window. The pre-emphasis circuit to enable carrier injection and 

extraction has been optimized for each modulation rate. 
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Figure 5.1 Experimental setup diagrams using the silicon microring 
resonator electro-optic modulator and commercial LiNbO3 Mach-Zehnder 

electro-optic modulator. a, Text. b, Text. c, Text. d, Top-view scanning-
electron-microscope (SEM) image of the microring modulator. 

 

 

Figure 5.2 | Experimentally-measured temporal responses of varying 
modulation rates for the silicon microring resonator electro-optic modulator 
and commercial LiNbO3 Mach-Zehnder electro-optic modulator. Output 
eye diagrams for the a, 5-Gb/s; b, 7.5-Gb/s; c, 10-Gb/s; and d, 12.5-Gb/s 
modulation rate using the microring modulator, and e, 5-Gb/s; f, 7.5-Gb/s; 

g, 10-Gb/s; and h, 12.5-Gb/s modulation rate using the Mach-Zehnder 
modulator. 
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For each modulation rate configuration of the silicon microring 

modulator, we perform bit-error-rate (BER) measurements of the resulting 

optical data signal leaving the chip (Figure. 5.3a). We first observe error-free 

operation (defined as having BERs less than 10-12) for each modulation 

rate. Subsequently, BER curves are recorded for the 5-, 7.5-, 10-, and 12.5-

Gb/s modulation rates. The experimentally-measured BER curves confirm 

the signal integrity degradation as the modulation rate is increased. 

 

5.3 BER Performance Comparison with State of The Art LiNbO3 

Mach-Zehnder Modulator 

We compare the performance of the micro-ring modulator with a 

commercial LiNbO3 Mach-Zehnder modulator at varying modulation rates 

(Figure. 5.2e–h). The experimental setup is depicted in Figure. 5.1b and 

described in the Methods section. This is accomplished by setting the clock 

rate to 5, 7.5, 10, and 12.5 GHz, electrically driving the Mach-Zehnder 

modulator with 5-, 7.5-, 10-, and 12.5-Gb/s data. The electro-optic response 

of the Mach-Zehnder modulator then encodes the incoming light with the 

same data. The optical data signal is then inserted into the silicon chip, 

bypassing the microring resonator. Once the data signal leaves the silicon 

chip, the eye diagrams of the optical signal are evaluated (Figure. 5.2e–h). 

The resulting eye diagrams show clear openings, and degrade as we drive the 

modulator at higher modulation rates, resulting mostly from the closing of 

the temporal window. The modulation bias is optimized for each 

configuration. For each modulation rate configuration of the LiNbO3 Mach-

Zehnder modulator, we perform bit-error-rate (BER) measurements of the 

resulting optical data signal leaving the silicon chip (Figure. 5.3a). We 
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observe error-free operation (defined as having BERs less than 10-12) for 

each modulation rate, and subsequently record BER curves for the 5-, 7.5-, 

10-, and 12.5-Gb/s modulation rates. Again, the experimentally-measured 

BER curves confirm the signal integrity degradation as the modulation rate 

is increased. 

 

 

Figure 5.3 | Experimentally-measured BER curves for up to 12.5-Gb/s 
modulation rate using silicon microring resonator electro-optic modulator 
and commercial LiNbO3 Mach-Zehnder electro-optic modulator. a, BER 

curves for 5-, 7.5-, 10-, and 12.5-Gb/s modulation rates using both the 
microring modulator and Mach-Zehnder modulator. b, Resulting power 

penalty associated with operation of the microring. 
 

To draw a system-level functional comparison between the two 

modulators, the BER curves measured for the LiNbO3 Mach-Zehnder 

modulator are set as the back-to-back cases for the BER curves measured 

for the silicon microring modulator. The resulting power penalties of the 

operation of the microring modulator compared to the Mach-Zehnder 

modulator are 1.2, 1.65, 3.15, and 5.4 dB for 5-, 7.5-, 10-, and 12.5-Gb/s 

modulation rates, respectively (Figure. 5.3b). Much of these power penalties 

may be improved with more optimal pre-emphasis configurations for each 
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modulation rate. 

 

5.4 Long Haul Data Transmission using Silicon Micro-ring 

Modulators 

We study the signal integrity degradation induced by dispersion effects in 

varying propagation lengths of SSMF, resulting from the induced chirp in 

the microring modulator. The experimental setup is depicted in Figure. 5.1c 

and described in the Methods section. We first transmit a 10-Gb/s 

modulated signal through SSMF lengths of 0, 1, 2, 5, 10, 15, 40, 60, and 80 

km, inducing proportional amounts of chromatic dispersion. The eye 

diagrams of the resulting optical signals are evaluated for each configuration 

(Figure. 5.4a–i). The eye diagrams show clear openings, and remain relatively 

unchanged for optical fiber lengths of up to 15 km (Figure. 5.4a–f). The eye 

diagrams subsequently begin to lose temporal window and display increased 

noise after 40-km propagation distances, as dispersion effects become more 

distinct (Figure. 5.4g), displaying noticeable degradation at 60 and 80 km 

(Figure. 5.4h,i). To evaluate this dependence of the signal integrity 

degradation on modulation rate, the silicon modulator is subsequently 

evaluated at a 12.5-Gb/s modulation rate for the 0- and 80-km optical fiber 

lengths (Figure. 5.4j,k). After this 80-km transmission, the eye diagram of the 

resulting optical signal is evaluated (Figure. 5.4k). Once again, the eye 

diagram shows noticeable degradation from the induced chromatic 

dispersion. 
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Figure 5.4 | Experimentally-measured temporal responses of varying 
propagation lengths through SSMF using the silicon microring resonator 

electro-optic modulator. Output eye diagrams for the a, 0-km; b, 1-km; c, 2-
km; and d, 5-km; e, 10-km; f, 15-km; g, 40-km; h, 60-km; and i, 80-km 
propagation lengths for 10-Gb/s modulation rate using the microring 

resonator, and j, 0-km; and k, 80-km propagation lengths for 12.5-Gb/s 
modulation rate using the microring resonator. 

 

We quantify the chromatic dispersion effects due to long distance 

propagation using BER measurements at varying propagation distances over 

a SSMF fiber. We perform BER measurements at the 10-Gb/s modulation 

rate for each propagation distance configuration (Figure. 5.5a). For each 

configuration, error-free operation is initially observed. BER curves are then 

recorded for the 0-, 1-, 2-, 5-, 10-, 15-, 40-, 60-, and 80-km propagation 

distances (Figure. 5.5a). Setting the configuration bypassing the SSMF as the 

back-to-back case, the measured power penalty is recorded for each 

propagation length (Figure. 5.5b). Compared to the 0-km propagation 

distance, the measured power penalties remains constant at 0 dB for all 

propagation distances up to 40 km, and are 0.6- and 2.5-dB for propagation 
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distances of 60 and 80 km, respectively (Figure. 5.5b). Using the chromatic 

dispersion for a given propagation length characteristic of the SSMF 

employed in these measurements, which is about 17 ps/(nm-km) at the 

1565-nm operating wavelength, the measured power penalties remain 

constant at 0 dB for all induced chromatic dispersions up to 680 ps/nm, and 

are 0.6 and 2.5 dB for induced chromatic dispersions of 1020 and 1360 

ps/nm, respectively. We then record BER curves at the 12.5-Gb/s 

modulation rate for the 0- and 80-km propagation distances (Figure. 5.3a). 

Once again, setting the configuration bypassing the SSMF as the back-to-

back case produces a 2.5-dB power penalty.  

 

 

Figure 5.5 | Experimentally-measured BER curves of varying propagation 
lengths through SSMF for up to 12.5-Gb/s modulation rate using silicon 

microring resonator electro-optic modulator. a, BER curves for 0-, 1-, 2-, 5-, 
10-, 15-, 40-, 60-, and 80-km propagation lengths for 10-Gb/s modulation 
rate, and 0- and 80-km propagation lengths for 12.5-Gb/s modulation rate, 
using the microring modulator. b, Resulting power penalty for the varying 

propagation lengths. 
 

The measured power penalty for each bandwidth-distance product 

configuration is then determined, producing power penalties that, for the 10-

Gb/s modulation rate, remain constant at 0 dB for all bandwidth-distance 



 

93 

products up to 400 Gb-km/s, and are 0.6 and 2.5 dB for bandwidth-distance 

products of 600 and 800 Gb-km/s, respectively. For the 12.5-Gb/s 

modulations rate, the data signal incurs a 2.5-dB power penalty for the 1 Tb-

km/s bandwidth-distance product. 

 

5.5 Conclusion 

In conclusion, we demonstrate error-free transmission of silicon micro-ring 

modulated signals with a bandwidth distance capacity of 1Tbit.km/s 

(propagation distances up to 80 km at 12.5 Gbit/s). We show 1 dB 

dispersion power penalty for 10 Gbit/s signals propagating over 60 km in a 

standard SMF fiber. We also report the resulting power penalties for varying 

propagation distances, induced chromatic dispersions, and bandwidth-

distance products. The demonstrated performance of this silicon modulator 

can enable longhaul and datacom range optical interconnects using silicon 

photonics [33]. 

 

We also benchmarked the error rates of silicon microring modulators with a 

commercial LiNbO3 Mach-Zehnder electro-optic modulator. Quantifiable 

performance metrics extracted from silicon photonic devices aid in 

determining the functionality that these devices perform in large-scale chip-

chip as well as on chip photonic network architectures [36, 37]. As system 

level demonstrations mature in silicon photonics [3], the results presented 

here may enhance the design of short range photonic networks using 

accurate physical layer models [37]. 
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5.6 Methods 

The experimental setup for the silicon microring modulator (Figure. 5.1a) 

involves a tunable laser (TL) source generating a CW 1565-nm lightwave 

that is coupled on chip using a tapered fiber. The lightwave is then 

modulated on chip by the microring resonator, driven by a pulse pattern 

generator (PPG) generating a 27-1 pseudo-random bit sequence (PRBS), 

followed by a pre-emphasis circuit. Off chip, the signal passes through an 

erbium-doped fiber amplifier (EDFA), a tunable grating filter (λ), and a 

variable optical attenuator (VOA). The signal is received by a high-speed 

PIN photodiode and transimpedance amplifier (PIN-TIA) receiver followed 

by a limiting amplifier (LA), and is evaluated using a BER tester (BERT). 

Both the PPG and BERT are synchronized to the same clock. Using a 

power tap, a communications signal analyzer (CSA) is used to examine the 

temporal response of the signal before the receiver. Polarization controllers 

(PCs) are used throughout the setup. 

 

The experimental setup for the LiNbO3 Mach-Zehnder electro-optic 

modulator is similar to the aforementioned experimental setup, except the 

modulation occurs off chip using the Mach-Zehnder modulator, before the 

optical signal is coupled on chip (Figure. 5.1b). Once on chip, this 

modulated signal passes by the silicon microring resonator off resonance. 

 

The experimental setup for the silicon microring modulator and SSMF 

utilizes the microring modulator to modulate an incoming CW light from a 

TL source (Figure. 5.1c). The lightwave is coupled on chip using a tapered 

fiber to inverse-tapered waveguide, and is subsequently modulated by the 
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microring resonator, which is driven by a PPG generating a 27-1 PRBS, 

followed by the pre-emphasis circuit. Once off chip, the signal passes 

through an erbium-doped fiber amplifier (EDFA) and a tunable grating filter 

(λ) before passing through varying lengths of SSMF, set to 1-, 2-, 5-, 10-, 15-, 

40-, 60-, and 80-km lengths, as well as the 0-km back-to-back case bypassing 

the optical fiber. After leaving the optical fiber, the signal travels through a 

VOA, is received by a high-speed PIN-TIA receiver followed by a LA, and is 

evaluated using a BERT. Both the PPG and BERT are synchronized to the 

same clock, which is set to either 10 or 12.5 GHz. Using a power tap, a CSA 

is used to examine the temporal response of the signal before the receiver. 

PCs are used throughout the setup. The pre-emphasis circuit is optimized 

for each modulation rate, and is then kept constant for the varying 

transmission configurations of propagation distance. 
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Chapter 6 

WIDE TEMPERATURE RANGE OPERATION OF  

SILICON MICRORING MODULATORS: 

Scaling the operating range 

 

Abstract: We demonstrate high bit rate electro-optic modulation in a 

resonant micron-scale silicon modulator over a temperature range of 15 K. 

We show that low error bit rates can be achieved by varying the bias current 

through the device to counteract the temperature changes. We demonstrate 

operation of the silicon ring over a 15 K temperature range. 

 

6.1 Introduction 

High speed electro-optic modulation in silicon is a crucial requirement for 

integration of silicon photonics with microelectronics. High speed Gbit/s 

modulators have been demonstrated recently using either resonant structures 

[1-3] or Mach-Zehnder interferometers [4-6]. Resonant electro-optic 

modulators are ideally suited for large scale optical networks on chip due to 

their compact size, high extinction ratio per unit length and low power 

consumption. However, resonant electro-optic modulators suffer from 

temperature sensitivity due to the relatively large thermo-optic effect in 

silicon [7].  

 

In this paper, we demonstrate that the effect of thermal variations on 

resonant electro-optic modulators can be locally compensated by adjusting 

the bias current passing through the device.  The bias current through the 

device is varied to compensate for changes in the ambient temperature 
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which affect the resonator. We show that modulation can be maintained 

over a temperature range of 15 K. Robustness in the presence of 

environmental conditions such as thermal variation for integrated silicon 

photonic devices can enable wide variety of applications in low cost CMOS 

systems. 

 

The device we demonstrate is a silicon electro-optic ring modulator 

fabricated on a Silicon-on-Insulator (SOI) substrate. The modulator is 

formed by building a P-I-N junction around a ring resonator with a quality 

factor (Q) of 4000 and a diameter 10 μm. The schematic of the electro-optic 

device is shown in Figure. 6.1(a) and 1(b). The SEM picture of the resonator 

is shown in Figure. 6.1(c). The transmission spectrum of the ring for quasi-

TM polarized light (major electric field component aligned perpendicular to 

the plane of silicon) is shown in Figure. 6.2 (a). 
 

 
 

Figure. 6.1. a) Schematic of the electro-optic ring device b) Cross section of 
the waveguide embedded in a PIN junction c) Electron microscope image of 

the ring resonator before the formation of electrical device. 
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At constant temperature, the optical transmission through the ring is 

modulated using a non-return-to-zero bit sequence at 1 Gbit/s. The 

refractive index of the ring is modulated by active carrier injection and 

extraction using the PIN junction. The modulated output waveform and eye 

diagram at 1 Gbit/s at nominal temperature of operation (298 K) is shown 

in Figure. 6.2 (b).  An On/Off extinction ratio of 5 dB is measured in 

accordance to the transmission spectral characteristics with a + 4 V applied 

voltage. The high applied voltage is attributed to a large contact resistance of 

the device (1.7 kΩ) which can be greatly reduced by varying the implant 

conditions, doping profile and contact metallization [8]. The power 

consumption is estimated as 4.52 pJ/bit with an estimated carrier lifetime of 

500 ps and injection level of 5X1017 cm-3 and taking into account both the 

switching and state holding power. 

 
       Figure. 6.2 a) Transmission spectrum of the electro-optic modulator 

under DC bias voltage b) Modulated waveform at 1 Gbit/s. Both 
measurements were performed at at nominal operating temperature (ΔT= 0 

K) 
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6.2 Thermal effects 

We analyzed the effect of temperature shift on the silicon electro-optic 

modulator over a temperature range of 15 K. The thermo-optic effect of 

silicon is given by 141086.1  KTn which leads to a resonance shift of 

~0.11 nm/K from the base resonant wavelength. The sign and approximate 

value of the thermo-optic coefficient of silicon can be estimated using the 

temperature dependence of the band-gaps of silicon [9-11]. The net effective 

index change in the modulator results from a combination of the thermo-

optic effects in both silicon and the surrounding oxide.  Figure. 6.3 a shows 

the spectral shift as the temperature of the chip is varied over 4 K. Figure. 

6.3 b shows the distorted eye diagrams under a 2 K temperature shift. We 

also compare the effect of thermal shift on the modulated waveforms with 

electro-optic computer simulations and show a good match between 

simulation and experiment, as shown in Figure. 6.4 (a).  

 
Figure. 6.3 a) Transmission spectra with temperature changes with no 

current through the device b) Distorted eye diagram at ΔT= 2 K., 1Gbit/s  
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Figure. 6.4 Simulation of the waveform distortion due to thermal effects. a) 

Baseline simulations at ΔT= 0 K b) Distorted wave forms at ΔT= 15 K, 
with the red lines showing the electro-optic device computer simulations and 

the black lines showing the measured wave forms. 
 
 

6.3 Electro-optic and thermo-optic modeling 

A description of the electrical modeling is presented elsewhere [12]. The 

optical modeling assumes that the ring resonator is a unidirectional single 

mode traveling-wave cavity coupled to the waveguides with a loaded quality 

factor of 4000. The changes in refractive index and absorption of silicon are 

modeled via free carrier dispersion [13, 14]. The simulated and measured 

waveforms with a 15 K shift in temperature are shown in Figure. 6.4 (b). 
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6.4 Controlling the waveguide temperature for error free operation 

In order to enable wide temperature operation of resonant silicon 

electro-optic modulators, we propose and implement local thermal control 

of the waveguide temperature by changing the bias current through the 

device. Using a DC bias current we first set the nominal operating condition 

of modulator, and as the ambient temperature varies we vary the DC bias 

current to maintain the local temperature of the device at the original value. 

As we vary the bias current of the PIN junction, the heat generated in the 

waveguides allows control over the local temperature of the waveguide 

forming the resonator. We emphasize that this method is fundamentally 

different from using a free-carrier electro optic phase shift associated with 

carrier injection to obtain wide temperature operation. 

 

Using this control technique, we experimentally demonstrate wide 

temperature range, 15 K, operation of the resonant silicon electro-optic 

modulator. To control the DC bias current through the device, we add the 

high speed RF signal to a DC current source using a bias tee. A capacitor of 

20 nF avoids the loading of the bit pattern generator by the DC bias supply, 

and an inductor of 1 mH isolates the DC source from the bit pattern. The 

DC bias current is varied to counter the effect of the temperature change for 

retrieving the bit pattern. The base operating condition was set with a 1.36 

mA DC current through the device with a 0.2 V bias voltage. The current 

was reduced to 345 μA (with a 2.2 V bias voltage) in order to maintain the 

modulation when the ambient temperature was raised by 15 K. Note that the 

current measured by the current meter is the averaged extraction current 

during the reverse bias of the device. Note that even though the bias current 
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produces an index change due to the injected carriers in the ON state, the 

effect of carrier dispersion due to the bias current is absent in the OFF state. 

Hence, the bias current is contributing only in regulating the temperature of 

the waveguides. The temperature of the heat sink is controlled through an 

external temperature controller with feedback. The Joule thermal power 

consumption for maintaining the base operating condition is estimated as 3.1 

pJ/bit and 0.20 pJ/bit at ΔT =15 K. 

 

 
 

Figure  6.5 Temperature profiles using a) metal strip heater and b) direct 
localized waveguide heating. The color bar indicates the temperature scale in 

K. 
 

We compare the power efficiency of the proposed local temperature 

control method with the commonly used metal strip heater method. We use 

two dimensional heat flow which takes into consideration conduction of 



 

108 

heat to the substrate and the radiative heat loss though the top surface of the 

chip. The thermal modeling was carried out in COMSOL. The loss through 

the top surface is modeled via the Stefan-Boltzman law with emissivity 

factors of 0.94 for SiO2 and 0.33 for the smooth metal layer. We assumed 

that the bottom of the wafer is the heat sink and is maintained at 300 K 

(Tamb).  We also assumed a 3 μm buried oxide layer and 1 μm top cladding 

oxide. The top cladding layer is chosen to be 1 μm so that the heating due to 

the metal layers is optimal while limiting the optical losses due to mode 

overlap with metal [16].   

 

We show that the direct localized heating inside the waveguide is 

significantly more efficient than a metal heater on top of the device for 

tuning resonances. The two dimensional thermal simulations show that the 

temperature difference produced by direct localized heating using the PIN 

structure is significantly larger than metal-strip-heater method (see Figure. 

6.7). We assumed a heat source of 1 mW/μm3 localized within the metal 

layer of the waveguide to compare the efficiency of both methods. We also 

assumed that the metal heaters were perfectly aligned with the waveguides 

for optimal heating. We compared the temperature difference (ΔT= Tlocal-

Tamb) at the center of the waveguide produced by both methods. The direct 

localized heating using PIN structure produces ΔT= 40.1 K/(mW/μm3) – 

Figure. 6.6 (b) - while a metal heater positioned on top produces ΔT= 21.3 

K/(mW/μm3) – Figure. 6.6 (a). Hence, the simulations show that the direct 

localized heating method is approximately twice as efficient as the metal 

heater. An added advantage of using the direct localized heating method 

technique is that it requires fewer fabrication steps as it makes use of the 
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existing structure (i.e. the contacts of the PIN device) to achieve thermal 

tuning. 

 

6.5 Wide temperature range operation 

         a) Eye Diagram at ΔT=0 K            b) Degraded at ΔT= 15 K           c) Retrieved at ΔT= 15 K 
Figure. 6.6 Optical transmission eye diagrams of the electro-optic modulator 

at various thermal and bias current conditions (applied AC modulated 
voltage was kept constant) 

 

We show open eye diagrams with clear eye opening over 15 K by 

controlling the DC bias current to maintain the local temperature of the ring 

at the original operating condition as shown in Figure. 6.6. We estimate the 

quality factor of the eye diagrams )( 1212  Q to be 11.35 at the 

nominal operating temperature. The retrieved quality factor at ΔT= 15 K is 

7.15. These Q values are sufficient for a BER of 10-12 [15]. A 210-1 Non-

Return-to-Zero (NRZ) Pseudo Random Bit Sequence (PRBS) was used for 

these experiments. The predicted thermal time constants are of the order of 

µs (Tc). Hence the effect of the length longest sequence of ones or zeros will 

be significant for PRBS signals with more than (Tc /Bit period) consecutive 

1s or 0s. Note that this limitation becomes less stringent as the bit rate is 

increased. For example, with a bit rate of 1 Gbit/s and a time constant of 

1000 ns the PRBS length is limited to 100‘s of consecutive bits.  However at 

20 Gbit/s, the PRBS number can be extended to 20 times longer sequences 
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6σ2=81mv 
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6σ2=46mv 



 

110 

since the bit period is significantly lower. 

 

6.6 Conclusion  

In summary, we have shown wide temperature range operation of 

resonant micron scale modulators while ensuring high speed operation. We 

demonstrated waveform restoration over a 15 K range while maintaining a 

bit rate of 1 Gbit/s. In light of the recent demonstration of high extinction, 

high speed (> 18 Gbit/s, 10 dB) modulators [17], the wide temperature 

range operation of resonant compact electro-optic modulators has 

significant impact for the large scale integration of compact modulators for 

on chip optical networks. 
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Chapter 7 

TUNABLE SLOW AND FAST LIGHT  

ON A SILICON MICROCHIP USING MICRORINGS 

 

Abstract:  We demonstrate superluminal propagation in a silicon micro 

photonic device by creating an all-optical analogue to electromagnetically 

induced absorption in a solid state room temperature device of tens of 

microns dimensions allowing easy integration with high bandwidth room 

temperature systems. We achieve tunable negative delays up to 85 ps and 

effective group indices tunable between -1158 and -312.  

 

7.1 Introduction 

Controlling the speed of propagation of optical pulses is an important 

requirement for high performance optical information technology. In 

particular, superluminal propagation has been experimentally demonstrated 

within the causal limits of information transfer using electromagnetically 

induced absorption [6], gain doublet in specific material systems [7-10] 

coherent population oscillations [11] and bulk photonic components [12]. 

However, these techniques suffer fundamentally from low bandwidth [1-4] 

and/ or are constrained severely in temperature and operating wavelengths 

making their integration on-chip challenging [1-10]. 

 

7.2 Operating Principle 

To demonstrate fast light on a silicon chip, we use the concept of 

electromagnetically induced absorption (EIA) from atomic physics, where 
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coherent interaction between optical fields and electronic energy states gives 

rise to a sharp absorption feature in a broader transmission spectrum [13]. 

The sharp spectral features in EIA systems are associated with negative 

group indices and fast light. Hence, by designing an optical device with a 

transmission spectrum that emulates the optical spectrum of an EIA system 

one can demonstrate fast light in a micro-photonic platform. We show here 

that such a device is realisable in a micro photonic platform.  

7.3 Device Description 

To demonstrate an optical analogue to EIA on a micro photonic 

platform, we designed and fabricated a photonic structure formed by two 

interacting optical resonators. Earlier works have suggested an optical 

analogue to EIA in coupled macro scale optical cavities [14]. The top view 

microscope image of the device is shown in Figure 7.1.  

 
 

 

Figure 7.1: Top view microscope image of the device 

The present optical device works similar to a Fabry- Perot (FP) cavity but 

with two salient distinctions: a) the mirrors forming the FP cavity are 

frequency sensitive which as we show later leads to the tunability of fast light 

Input 
560 nm  
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b) the reflection from the mirrors is routed into second waveguide which 

allows for the formation of a super mode. In, figure 7.2, the resonators A 

and B can be understood as frequency selective mirrors. Light is confined in 

the waveguide region between the mirrors similar to an FP cavity as shown 

by the mode profile. However, the device is designed such that the light 

rerouted to the Port A is coherently interfered with the light leaking out of 

the super-mode cavity producing a sharp absorption like feature (figure 7.3 

a). The bandwidth of this absorption feature is determined by the bandwidth 

of the cavity formed by the two reflectors. Moreover, the loaded bandwidth 

of the spectral feature, and therefore the bandwidth in which the pulse 

advancement occurs can be controlled externally by tuning the reflectivity of 

the resonators. 

 
 

 

Figure 7.2: Formation of an all optical analog to electromagnetically induced 
absorption spectral feature line at Port A. 

 

We fabricated the device on silicon on insulator platform. The waveguides 

forming the ring and the straight sections have a width of 560 nm and height 

of 250 nm. The rings have a radius of 7 microns. A small difference (8 nm) 
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in perimeter of one of the rings is used to produce a wavelength detuning 

between the rings. The centre-to-centre distance of the rings is 22 microns. 

The waveguides and rings are patterned on silicon using electron-beam 

lithography followed by reactive ion plasma etching. The resulting structure 

is clad by a 3 micron thick SiO2 layer deposited by plasma enhanced 

chemical vapor deposition. 

 

7.4 Measurement of optical delay and advance 

We measured a pulse advance of 85 ps at the output port at the 

absorption-like spectral range (see Figure 7.3 b). The experimental setup to 

measure the optical advance is shown in Figure 7.4. A continuous wave light 

from a tunable laser source modulated at RF frequency (500 MHz) is 

coupled into the device. We estimate the relative group delay by comparing 

the probe and the output in the time domain. The time advance of the 

optical signal can be tuned by tuning the absorption-like spectral feature. 

The bandwidth can be tuned by shifting the resonance condition of one or 

both of the resonators. This may be accomplished through either thermal 

[15] or electrical [16] mechanisms. In this demonstration, we thermally tune 

one of the rings using an argon laser [17]. Using an optical fiber, green argon 

laser light (514.5 nm) in the mW power range is incident on one of the rings. 

As silicon absorbs the incident power, the temperature of the ring is locally 

modified to produce a red shift in the resonance through thermo-optic 

effect. As the incident argon laser intensity is increased, the absorption 

super-mode quality factor is modified. As shown in Figure 7.5 a, the 
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bandwidth of the EIA spectral feature is modified as the power of the 

incident laser is increased.  
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Figure 7.3. a All Optical Analog to Electromagnetically Induced Absorption: 
An optical analog to EIA is created when light from the super mode formed 
between the reflectors coherently cancels the light coupled into the port A 
(in Figure. 7.2). The sharpness of the spectral feature is controlled by the 
bandwidth of the super mode which is limited only by the intrinsic quality 

factor in Silicon 

 

The measured optical pulse advance is shown in Figure 7.5 b, where the 

pulse advance is tuned from 85 ps to 23 ps corresponding to an effective 

group index range of -1158 to -312. Note that the maximum pulse advance 

is limited only by the maximum Q of the cavities, which in turn is limited by 

the fabrication process. However, the bandwidth-delay limit still applies to 

the system limiting the achievable fractional advance of the signals. 
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Figure  7.3 b Optical advance through the device measured at the EIA 
spectral feature 

 
 

Figure. 7.4. Experimental setup. The black lines represent optical fiber and 
red lines represent coaxial cables for modulator RF input and oscilloscope 

trigger input. High speed electro optic modulator generates a sinusoidal 
probe beam of 500 MHz. Light is coupled to the device and compared with 
a reference arm to determine the delay or advance. An argon laser beam at 

514.5 nm is used to thermally tune the structure to vary the bandwidth of the 
EIA feature. 
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Figure. 7.5. Measured tunable optical advance through the device. The 
reflectivity of the mirrors is frequency sensitive and can be controlled by the 
tuning of one or both the reflectors. The tunable bandwidth of the spectral 

feature is shown in (a). The measured tunable optical pulse advance is shown 
in (b). The tuning of the reflectors was done here using a 514.5 nm argon 

laser incident on the device. 
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In contrast to the traditional methods, the nominal operating temperature 

for the above technique can span 100s of Kelvin, corresponding to 100s nm 

tuning range of the nominal operating wavelength. The nominal operating 

temperature can be designed to be between a few K to ~700 K, limited only 

by the thermally generated free carrier concentration. The nominal operating 

wavelength can be chosen to be anywhere in the 1300 nm-5500 nm region 

of transparency in silicon. The operating bandwidth and the maximum pulse 

advance can be chosen by controlling the quality factor of the optical cavity 

which can be designed with quality factors between 102 and 106 by 

controlling the losses arising from bending radius, scattering losses and 

surface conditions [18]. Note that even though the fractional advancement 

of the pulses is comparable to earlier methods, the operating bandwidth is 

fundamentally higher than earlier methods which are constrained by the 

material electronic energy states [1-9]. 

 

 

 

 

 

 

Figure. 7.6. Measured tunable delay and optical advance through the device. 

 

In conclusion, we have shown tunable superluminal propagation on a 

silicon substrate using coherent interaction between optical micro-cavities. 
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We demonstrate generation of 85 ps time advanced signals. We also show 

that the negative group index can be tuned between –1158 and -312. In 

contrast to the earlier approaches [1-12] the proposed technique does not 

require gain media or specific energy levels and works at room temperature 

in an integrated silicon micro-scale device. The ability to advance optical 

pulses in a solid state highly scalable silicon micro-scale system could open 

up a wide array of control techniques for high performance micro optical 

information technology . 
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Chapter 8 

ELECTRO-OPTICALLY TUNABLE SLOW-LIGHT ON SILICON 

 

 

Abstract: We demonstrate, for the first time, an electro-optically tunable 

delay element on a silicon micro-chip. We show tunable delays between 12 

ps to -35 ps. We demonstrate electro-optic ultra-fast control of the optical 

quality factor of an on-chip silicon micro cavity. The micron-size cavity is 

formed by light confinement between two micro ring resonators acting as 

frequency selective mirrors. The ring resonators are integrated into PIN 

junctions enabling ultra-fast injection and extraction of carriers. We show 

tuning of the cavity quality factor from 20,000 to 6,000 in under 100 ps. We 

demonstrate both, high Q to low Q, low Q to high Q transitions. 

 

8.1 Introduction 

This chapter is an attempt to integrate the electro-optic functionalities 

developed in the earlier sections with the slow-light elements of the section 

7. The ability, to delay and advance optical pulses, was believed to be 

essential for optical networks on chip leading to a large volume of literature 

between 2001 and 2007. However, towards 2007, the stringent limitation of 

slow light due to bandwidth-delay product limit became evident. However, 

the level of electro-optic integration shown in this work remains the state-of-

the-art for silicon slow light integration to date. 
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First step towards developing a tunable slow light element based on micro-

rings is to show electrically tunability of optical bandwidth. The first section, 

therefore, concentrates on electro-optically tunable optical bandwidth. 

 

8.2 Electro-optic bandwidth tuning 

 Dynamic tuning of optical micro-resonators has been shown to provide 

new functionalities for on-chip optical communications and information 

processing [1-3]. Fast tuning of the optical quality factor (Q) is an important 

condition for optical processing based on dynamic photonic structures [4, 5]. 

To date, most approaches have shown only a weak tuning of the Q [6] or 

used all-optical techniques [7] or slow thermal processes [8, 9]. However, an 

integrated electro-optic ultra-fast tuning mechanism for the Q will enable 

important functionalities such as on-chip optical buffers, wavelength 

converters, reconfigurable switches and filters for high speed planar 

integrated optics. In this paper, we show strong changes in the Q of a 

micron size cavity, from 6,000 to 20,000, achieved by in-plane integrated 

electrooptic tuning in under 100 ps. 
 

8.3 Device Description 

The cavity used here consists of two micro-rings which are coupled to a 

pair of parallel waveguides. An optical cavity is formed by confinement of 

light between the two resonators which act as reflectors near their resonant 

wavelengths. By controlling the center wavelength of the resonators, one can 

change the reflectivity of the mirrors and control the quality factor of the 

cavity formed.  The existence and nature of a super mode formed by 
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confinement of light between two resonators has been theoretically and 

experimentally described earlier in detail [10, 11]. The device, as shown in 

Figure. 8.1 a, consists of two micro-rings each with a diameter of 

approximately 14 μm which are coupled to a pair of parallel waveguides.  In 

Figure. 8.1 b, we show the transmission spectrum of the device for TE 

polarized light (dominant electric field parallel to the silicon substrate). The 

measured transmission spectrum agrees with a time domain model where the 

optical transmission is calculated iteratively. The coupling coefficient from 

the waveguides forming the straight sections to the ring is 0.8 % and the 

propagation loss of the curved waveguide forming the ring is 8.0 dB/cm. 

 

 
 

Figure. 8.1. a) SEM image of double ring cavity. b) Transmission Spectrum 
of the device (the drop port spectrum is shown in the inset) 
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a ba b
 

 
 

Figure. 8.2. a) Schematic of electro-optically integrated double ring cavity. b) 
Microscope image of the device 

 

 

The device is defined on a silicon-on-insulator (SOI) wafer integrated 

into an electro-optic structure by creating PIN junctions, which allows for 

the electro-optic tuning of the resonances of the resonators. The coupling 

waveguides and the rings all have a width 560 nm and a height 250 nm. The 

center-to-center (CTC) distance between the waveguides forming the rings 

and the straight waveguides is 720 nm, and the CTC distance between the 

rings is 44 μm (see Figure. 8.2 a). Concentric p+ and n+ doped regions are 

defined inside and around the resonating devices to allow for electrical 

carrier injection and extraction, which modify the index of refraction of the 

Si and in turn control the spectral position of the resonances. The 

microscope image of the device with metal pads for electrical probing is 

shown in Figure 8.2 b.  

 

The PIN junction induces ultra-fast changes in carrier concentrations by 

active injection and extraction of carriers. The carriers can be extracted in 
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~10 ps, a value which is limited only by the time taken by the carriers to drift 

across the waveguide at the saturation velocity of 107 cm/s (which is 

determined by the optical phonon generation rate in silicon). The injection 

transients can also be as short as ~50 ps [12]. The structure is capable of 

producing index changes at rates of 10 GHz with relative index change ratio 

δn/n>10-4.  

 

The wave-guiding structures are defined on an SOI substrate using 

electron beam lithography (e-beam) followed by reactive ion plasma etching. 

After the definition of the waveguides, the excess Si is etched away but 50 

nm to allow for the injection and extraction of carriers from the intrinsic Si 

waveguide. N+ and P+ regions of the diode are each defined with e-beam 

lithography and implanted with Phosphorus and Arsenic to create 

concentrations of 1019 cm-3. The device is then clad with 1 µm of plasma 

enhanced vapor deposited SiO2 and annealed to activate the dopants. 

Following the activation, e-beam and RIE are used again to define and etch 

vias through the cladding down to the doped regions for the electrical 

contacts using nickel. Aluminum contact pads are then defined using e-beam 

lithography and evaporation followed by lift-off. 

 

8.4 Dynamic electro-optic bandwidth tuning of the device 

By controlling the center wavelength of the resonators, one can change 

the reflectivity of the mirrors and control the super mode quality factor (i.e. 

the transparency window).  Hence, the spectral width of the cavity formed 

between the two resonators is a strong function of the frequency separation 
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between the resonant frequencies of the two micro-rings. We measured the 

transmission spectra of the device for various applied voltages as the central 

wavelength of the ring 1 (corresponding to center wavelength of 1542.28 

nm) is changed by injection of free carriers through the PIN junction. As 

free carriers are introduced into ring 1, free carrier dispersion [7] leads to 

change in center wavelength of ring 1 which leads to a change in the spectral 

width of the super mode resonance. We measured the transmission spectra 

of the device as applied voltage is varied from 0 V to 1.2 V.  

 
Figure. 8.3. (Color online) Experimental transmission spectra (red, solid line) 

and theoretical fits (black, dashed lines). The curves correspond to 
transmission spectra as the applied voltage to one of the resonator is varied 

from 0 V to 1.2 V. The transmission spectra b-d are vertically offset for 
clarity. 
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We can see from the transmission characteristics in Figure. 8.3 (a) that a 

super mode with a Q of 20,000 is formed when no voltage is applied in the 

coupled ring device. When a forward bias is applied, the spectral width of 

the ransparency region is clearly increased indicating a decrease in the cavity 

Q to 6000 (Figs. 8.3 b-d).  Hence, we show that the Q of the transparency 

window can be electro-optically tuned from 20,000 to 6,000 by controlling 

the carrier concentration in the device. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure. 8.4 Sensitivity of the super mode transmission to changes in the 
distance between the coupled cavities. A 1% change in the distance between 

the cavities shows a 30% change in the transmission of the super mode. 
 
 

In order to ensure that the effect observed here is due to the presence of the 

super-mode, and not due to spectral filtering, we simulated the sensitivity of 

the super mode transmission feature to changes in the cavity length. We 

show that the super mode transmission spectrum is significantly affected as 
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the length of the cavity in the model is varied from 43.11 μm to 45.26 μm 

corresponding to a + 2 % change in the cavity length (Figure. 8.4). Note that 

in these simulations the resonance wavelength of the cavities is kept the 

same. 
 

 

For example, at 44.42 μm, a 1 % change on the cavity length from the 

nominal length leads to a 30% change in the super mode peak transmission 

indicating that the transparency window indeed corresponds to a super 

mode formed by confinement of light in the cavity formed by the two 

resonators acting as reflectors. We used a time domain iterative model to 

calculate the fields in the resonators.  

 

 
                           (a)                                          (b)                                                   (c) 

Figure. 8.5. a) The red line shows the transmission spectrum when a forward 
bias is applied to the ring corresponding to lower wavelength resonance. The 

black line shows the transmission of the unperturbed device. b) Time 
response of the transmission at λprobe as the Q of the device is switched from 
a low Q to state to a high Q state. c) Time response of the transmission at 
λprobe as the Q of the device is switched from a high Q to state to a low Q 

state. 
 

We measured ultra-fast transitions of the Q by probing the transmission 

dynamics through the device at a wavelength where the modulation of Q 
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leads to a modulation in the amplitude of the transmitted light. We applied a 

0.1 GHz repetition rate square wave with a 5 V amplitude and 100 ps fall 

and rise times. The DC bias voltage was varied between -3.5 V and zero to 

obtain optimum transitions. Note that no pre-emphasis or pre-distortion of 

the electrical signals has been used. We use forward bias to inject carriers 

and reverse bias to actively extract the carriers. In Figure. 8.5 a we show the 

transmission spectra through the device in a low Q state (injected carriers) 

and in a high Q state (depleted carriers). We choose a wavelength λprobe on 

the spectrum where a change in the Q produces a corresponding change in 

the amplitude of the transmitted light. In Figure. 8.5 b we show the time 

response of the transmission at λprobe as the Q of the device is switched from 

a low Q to state to a high Q state and in Figure. 8.5 c as the Q of the device 

is switched from a high Q to state to a low Q state. One can see that both 

transitions (low Q to high Q, high Q to low Q) occur within 100 ps.  

 

 The demonstrated approach is an order of magnitude faster than the 

all-optical methods in restoring the cavity to a high Q state (or a low Q state 

depending on the scheme) after the carriers are injected. The all-optical 

methods rely on recombination of the carriers to restore the unperturbed 

cavity condition. In contrast an electrooptic integrated device as shown here 

can restore the cavity condition by active extraction of free carriers. A fast 

cyclical modulation of the Q from low to high and high to low states is 

essential for various optical processing techniques [5, 6]. Novel device 

structures may be used to induce fast extraction as well as injection of 

carriers in ~10 ps using high field carrier transport [13].  
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In summary, we have shown ultra-fast tuning of the optical quality factor 

in an integrated photonic structure on a silicon chip in 100 ps. Control of the 

cavity Q in these time scales will enable novel functionalities such as 

wavelength conversion, pulse compression, fast tunable optical filters, delay 

lines and light-stopping schemes, previously only demonstrated using all-

optical systems [1, 7]. 

 

8.5 Electro-optic tuning of the slow-light device 

 

 

 

 

 

 

 

Figure. 8.6 a) Measured optical spectrum (TE mode of the waveguides, 
Dominant electric field parallel to the plane of the chip). b) Measured delay 

through the device for 0 V and 1.4 V applied voltage to the left ring. 

 

We measured the tunable delay spectrum at the output port with 

tunability from 5.51 ps to -28 ps corresponding to group indices index of 

37.2 to -190 at 1542.85 nm. We measure a peak delay of 10.5 ps at 1542.91 

nm. The experimental setup to measure the optical delay is shown in Figure. 

8.2. A continuous wave light from a tunable laser source is polarized and 
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modulated at 1 GHz, and coupled into the device. A 90-10 splitter is used 

prior to the input polarization controller for signal comparison during the 

measurement. A polarization filter is used at the output of the chip to isolate 

the wanted polarization. The switch is used to acquire and compare the 

delayed and original signals alternatively. We estimate the relative group 

delay by comparing the probe and the output in the time domain. The time 

delay of the optical signal can be tuned by adjusting the spectral features of 

the device via carrier injection. The measured spectrum for the quasi-TE 

mode (dominant E-field parallel to the plane of silicon) is shown in Figure. 

8.3a. The measured optical delay spectrum is shown in Figure. 8.3b, where 

the pulse delay is tuned from 5 ps to -28 ps corresponding to an effective 

group index range of 37.2 to -190. Note that the maximum pulse delay is 

limited only by the waveguide losses, which in turn are limited by the 

fabrication process. 

 

In conclusion, we demonstrate an electro-optic tunable delay element with 

tunable delay between 5.51 ps and -28 ps corresponding to group indices 

between 37.2 and -190. This device is the demonstration of another 

important on-chip component to enable optical networks on chip. 
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Chapter 9 

OPTICAL NON-RECIPROCITY IN  

OPTOMECHANICAL STRUCTURES  

 

Abstract: In this section, I demonstrate that an optomechanical system 

where dominant light-matter interaction takes place via linear momentum 

exchange between light and a mechanical structure, exhibits a non-reciprocal 

behavior. As an example, I propose a micro-scale optomechanical device 

that can exhibit a non-reciprocal behavior in a micro photonic platform 

operating at room temperature. I show that depending on the direction of 

the incident light, the device switches between a high and low transparency 

state with more than 20 dB extinction ratio. This section is aimed came out 

of exploration of new problems that can be solved due to the ability to 

integrate photonics on a evolved fabrication platform such as silicon 

photonics. Non-reciprocity is a long standing problem in optics going back 

to early classical electromagnetism [8, 9]. While several approaches have 

been attempted, an approach that is suitable for a non-magnetic solid state 

system has not been found so-far. This is the first time, non-reciprocity has 

been proposed without relying on the material‘s electrical or magnetic 

responses. 

 

9.1 Introduction 

Breaking the reciprocity of light on-chip can lead to an important new class 

of optical devices such as isolators, which are critical for the development of 

photonic systems. Traditional methods for creating non-reciprocal devices 
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rely on magneto-optic media, optically-active media or photovoltaic electro-

optic crystals1-4. Non-reciprocal behaviour has also been studied in time 

varying media5-6, bi-anisotropic media7,8 (such as magneto-electric media), 

and relativistic moving media9. However, the development of non-reciprocal 

devices for a micro-photonic platform remains a challenge6. Hence, it is of 

great interest to pursue alternative mechanisms to break the reciprocity of 

light on a micro-scale platform. Here, we show non-reciprocity by exploiting 

a fundamental difference between forward and back moving light: its 

momentum.  Recent work in optomechanics10, enabled by advances in 

optical micro cavities11 and nano-electro-mechanical systems12, has shown 

tremendous potential for a new class of micro-scale devices13-16 and novel 

physical phenomena such as optomechanical cooling17-22. In this paper, we 

show that when the dominant light-matter interaction takes place via 

momentum exchange, optomechanical devices can exhibit non-reciprocal 

behaviour; since their optical spectral characteristics are strongly dependent 

upon the direction of the incidence of light. We propose a silicon based 

micro-opto-mechanical device that exhibits a non-reciprocal behaviour with 

a contrast ratio > 20 dB. 
 

9.2 Principle of Operation  

An example of an optomechanical structure which interacts with light 

through linear momentum exchange consists of an in-line Fabry Perot (FP) 

cavity with one movable mirror and one fixed mirror (Figure. 9.1). The 

emergence of non-reciprocity in such as system can be understood as 

follows (see Figure 9.1 a): For a left-incident beam at the optical resonance 

frequency, the net momentum imparted per second on the movable mirror 
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is -((2η-1) - R) I/c (where η is the power build up factor of the cavity, R is the 

power reflectivity of the FP cavity, I is the incident power and c the speed of 

light in vacuum, and the negative sign indicates that the direction of the 

force is away from the cavity). On the other hand, for a right-incident beam 

the net momentum imparted per second on the movable mirror is  -((2η -1)+ 

R) I/c. Hence the differential radiation force for left and right incident beams 

is 2RI/c producing a non-reciprocal mechanical response from the mirror 

leading to non-reciprocal optical transmission spectra. 

 

Figure 9.1. Optomechanical Scheme under consideration: Non-reciprocal 
mechanical response. a) Forward incident light b) backward incident light 

9.3 Device Description 

To illustrate the non-reciprocal behavior in a realistic micro-optomechanical 

device we describe a representative device which can be fabricated in a 

silicon material system. The device (Figure. 9.2) consists of a quasi-1D 

standing wave cavity formed by two quarter wave Bragg reflectors with one 

of the mirrors suspended via micro-cantilevers24. The mirrors forming the 

cavity are fabricated in a high index contrast system (the refractive indices of 
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Si and SiO2 are approximately 3.5 and 1.5 respectively). Spring constants 

spanning several orders of magnitude can be achieved (typically from 10-5 N 

m-1 to 1 N m-1 [24]), by varying the materials, geometry and the arrangement 

of the cantilevers. We model the movable mirror as a vertical translation 

plate supported by four beams. Using COMSOL26 software package we 

compute the mechanical response of the structure by including material 

properties and boundary conditions into a Finite Element Method (FEM) 

based solver. No angular displacement is allowed because the beams are 

connected to the mirror which remains parallel to the substrate under 

nominal plate movements. The spring constant associated with four fixed 

beams is given by 334 lEwt where E is the young‘s modulus and w, t, and l 

are the width, thickness, and length of the silicon beams respectively25. In a 

given material system, the cubic dependence of the spring constant on the 

aspect ratio ( lt ) allows for a wide range of spring constants for this beam 

geometry. We consider a 10 X 10 μm2 mirror suspended using micro-

cantilevers of thickness 110.5 nm (~λc/4nsi where λc is 1550.5 nm and nsi (3.5) 

the refractive index of silicon), 10 µm length, and 100 nm width. The mass 

of the mirror is 165.26 pg. The spring constant for the chosen dimensions is 

~0.06 Nm-1. Using the FEM software we calculate the mechanical 

displacement of the movable mirror for ~666 pN (2I/c) applied force 

corresponding to a net radiation force from a 100 mW beam reflected 

perfectly from the mirror (see Figure. 9.2) to be on the order of 10 nm. The 

bandwidth of the optical cavity formed by the mirrors is primarily 

determined by the reflectivity of the mirrors. We show the optical 

transmission characteristics of the device in Figure. 9.2 d. We consider 

quarter wave stacks on either side formed by alternating layers of Si and SiO2 
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with 2 layers of deposited silicon and three layers of deposited oxide. 

 
 

Figure 9.2. Proposed optomechanical device for realizing non reciprocal 
transmission spectra a) Side View b) Top View c) Mechanical response of 

the suspended mirror for a radiation force corresponding to 100 mW 
incident power. C) Optical Transmission through the device for low light 
intensities. Reflectivity Spectra for the mirrors are shown in dotted lines. 
Layer thicknesses of the mirrors are slightly offset (5 nm) to allow for a 

pump-probe measurements. An optional mechanical stop can be added near 
the movable ring to minimize the insertion losses. 

 

The mirrors form an air filled cavity of length ~50λc/2. The quality factor of 

the cavity (Q=λc/Δλ) is ~5200 centred at ~ λc=1550.5 nm. The mirror layers 

have thicknesses of 21λmirror1/4 nsi, 21λmirror2/4 nsi. 
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9.4 Non-reciprocity emerges naturally in a optomechanical system 

responsive to radiation pressure : Mathematical Modeling 

Non-reciprocal behaviour in the proposed structure emerges due to the 

asymmetry of the radiation pressure on the movable mirror for forward and 

backward incident light. We model the cantilever dynamics by a driven 

second order differential system with a non-linear driving function 
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 and r1, r2 & t1, t2 are the mirror reflectivties and 

transmittivities; l is the steady state cavity length. We assume a mass of 

165.26 pg, spring constant of 0.06 Nm-1 (corresponding to a 10X10 µm2 

Bragg mirror, see Figure.9.2) and a net damping parameter of 10-6 kgs-1. The 

damping mechanisms may include mass damping, stiffness damping, 
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acoustic leakage at the anchors and thin fluid squeezing26. The coupled 

optomechanical response is calculated at each time step (1 ns ~ 

τmechanical/1600) by updating both the optical and mechanical state of the 

cavity. We also note that the photon life time (τphoton pscQ 1.42   ) is 

much smaller than the mechanical rise time (τmechanical nsmb 16/  ), which 

allows for the calculation of the optomechanical response iteratively. We 

neglect the quantum Langevin noise in calculating the optomechanical 

response. The transmission spectral characteristics exhibit the classical 

behaviour of optical bi-stable systems. The transmission spectra of the 

device for forward and backward incident light are shown in Figure. 9.3. 

One can see the formation of a non-reciprocal transmission window at 

1551.2 nm with a bandwidth of 0.25 nm and a forward to backward incident 

light extinction ratio of > 16 dB. The transition time for back ward to 

forward incidence (and vice versa) is on the order of τmechanical 

( ),(*)2/1( effm mKQ where Qm is the mechanical quality factor) given by 

mechanical design of the movable mirror. 

 

9.5 Optimising the device for low-insertion loss 

The insertion loss through the device can be minimized by providing a 

mechanical stop for the movable mirror. To obtain a unity peak 

transmission, the FP cavity needs to be perfectly on resonance with the 

incoming light. However when the cavity is perfectly on resonance, the 

radiation force on the mirror passes through a maximum leading to 

instability13.A mechanical stop allows for peak resonance build up while 

producing a non reciprocal response. We describe a non-reciprocal 

optomechanical device to achieve low insertion loss (<0.1 dB), high forward 
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to backward incidence extinction ratio (>20 dB). In Figure. 9.4, we show the 
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Figure  9.3 a. Transmission spectra of the device for forward and backward 

incidence of light. 

 

1548 1549 1550 1551 1552 1553

-40

-20

0

20
Mirror Displacment

 Forward Incidence

 Backward Incidence

D
is

p
la

c
e

m
e

n
t 

in
 n

m

Wavelength in nm

 
Figure 9.3 b. Steady state displacement of the movable mirror for forward 

and backward incidence of light. 
 
 

transmission spectra for forward and back ward incident light of 100 mW 
power when the mirror is constrained to -30 nm displacement. One can see 
the formation of a non-reciprocal spectrum with a 0.25 nm bandwidth and a 
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Figure  9.4. a) Transmission spectra of the proposed device for forward and 
backward incidence of light when the movable mirror is constrained at 30 

 

forward to back ward light extinction ratio > 20 dB. The insertion loss for 

the backward light is now < 0.1 dB. The bandwidth of the non-reciprocal 

spectrum can be controlled by choosing the appropriate mirror reflectivity. 
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We note that an important consideration for a mechanical stop is the affect 

of stiction force for mechanical objects in close proximity. However earlier 

works have successfully demonstrated various methods to overcomes this 

problem27. 

 

9.6 Effect of thermal noise 

The thermal equipartition noise imposes a minimum power condition for 

observing the non-reciprocal behavior. We estimate the optical power 

required for the radiation force displacement to exceed the mean square 

displacement of the mirror for a given spring constant. The minimum 

optical power required to overcome the thermal position noise is given 

by xcKI min , where KkTx  min
, k the Boltzmann constant, K the spring 

constant, and T=300 K ambient temperature. Following the fluctuation 

dissipation theorem, this analysis takes into account the Langevin noise28. 

One can see that the net optical power contributing to the non-reciprocal 

behaviour should be in the range of 10‘s of mW to overcome the thermal 

equipartition noise.  The optical power Imin can be lowered by lowering the 

spring constant. Even though thermal non-linearity has traditionally been an 

important constraint to micro-photonic devices29, we note that the effect of 

thermal non-linearity will only contribute equally to both directions of 

incidence. The general principles described here for creating devices with 

non-reciprocal transmission spectra can be extended to in-plane geometry by 

employing suspended resonators30 as frequency selective reflectors31. This 

class of devices with non-reciprocal spectra can enable new functionalities 

for integrated optical systems. 
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Chapter 10 

SYNCHRONIZATION OF  

OPTOMECHANICAL STRUCTURES  

 

 

Abstract: We theoretically and numerically demonstrate that long range 

radiation force mediated mechanical coupling and synchronization arise in 

optomechanical systems. As an example, we propose a planar micro-scale 

optomechanical device that exhibits non-linear frequency and phase 

synchronization of two unlike mechanical resonators. We show frequency 

and phase synchronization of micro-mechanical systems enabled by 

radiation force mediated mechanical coupling.  

 

This section is aimed came out of exploration of new problems that can be 

solved due to the ability to integrate photonics on a evolved fabrication 

platform such as silicon photonics. The ability to dynamically control the 

strength, phase and frequency content of mechanical coupling between 

spatially separated micro-mechanical systems can allow unprecedented 

flexibility. 

 

10.1  Introduction 

Synchronization of time varying systems plays a critical role in a wide range 

of natural phenomenon1-3 spanning biological clocks3 to coupled spin 

transfer nano-oscillators4-5. The ability to couple and synchronize distributed 

nano-scale systems can lead to a new class of chip scale devices with a wide 

range of applications1-6. In particular, controlled synchronization of micro-
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mechanical oscillators can enhance signal processing7-8, sensing9 and clock 

distribution10 using micro scale systems. With the recent advances in meso-

scale quantum-electro-mechanics11-14 and cavity optomechanics15-21, a direct 

long range low loss mechanical coupling mechanism may enable a new class 

of experiments on entanglement14 and non-locality22, 23. However, so far 

micro-scale mechanical coupling and synchronization between cavities has 

been limited due to the non-directionality of acoustic radiation, anchor 

topologies, substrate leakage/material phonon losses as well as restrictions 

of neighborhood in coupling6-10.  

 

Here, we propose and study radiation force mediated coupling and 

synchronization of micro-mechanical resonators. Optically mediated 

mechanical coupling can enable new level of control due to the ability to 

manipulate optical modes over a large range of time scales24 as well as length 

scales25 providing a new regime of control on mechanical coupling and 

mechanical quality factors of micro-mechanical resonators. We show that 

long range coupling and synchronization between mechanical cavities can be 

achieved by using optomechanical systems. We show that two dis-similar 

optomechanical oscillators lock in frequency and phase due to a long range 

radiation mediated mechanical coupling. 
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Figure 10.1. Proposed optomechanical device for nonlinear frequency 
synchronization a) Perspective schematic b) Top View c) The cavities A and 
B are formed by two evanescent wave optomechanical devices. Waveguides 

L1 and L2 provide the coupling between the optomechanical devices 
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10.2 Principle of Operation 

We propose novel optomechanical structures which enable mechanical 

coupling and synchronization of oscillators spread spatially over long length 

scales. This is enabled by a) Opto-mechanical structures with large coupling 

( dxdgom  , where  is the optical resonance frequency and x is the 

displacement) between the optical and mechanical degrees of freedom b) 

Strong, long range mechanical coupling mediated via a shared optical mode. 

Opto-mechanical structures with large coupling can be realized via 

micromechanical structures with evanescent interactions in a planar 

integrated device21, 26. The long range optical modes spread over 10s μm to 

cm can be readily achieved in microphotonic platforms using low loss nano-

scale wave-guiding systems27. In figure 1, we show the schematic of a two 

cavity optomechanical system where cavities A and B are optomechanical 

cavities interacting via optical paths L1 and L2 to allow for mutual coupling 

between the cavities. 

 

We show that optomechanical systems interacting via an optical mode 

behave as non-linear coupled oscillators with reactive coupling.  The 

governing equations for optomechanical systems driven by radiation 

pressure can be written as15, 28 





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m

g
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mm


       (1) 

axgi eom   )( 1


               (2) 

Where m is the mechanical mode damping rate, m the mechanical natural 

oscillation frequency, dxdgom  is the optomechanical coupling coefficient, 

  is the intra-cavity field normalised such that 
2


 is the intra-cavity optical 
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energy.  is the white-noise Langevin function representing the noise 

sources, 01   p represents the frequency detuning of the optical pump 

field a. The governing equations for two optomechanical cavities with intra-

cavity fields a , b coupled through an optical path can be written as  

)()( 1 ab

i

ePumpeaaomaaa eaxgi   
  (3) 
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  (4) 

where the mechanical displacement of the cavities ix  is driven by the 

radiation pressure force, 
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               (5) 

And 
ie is the optical phase shift due to time of flight delay for the coupling 

beams. The subscripts represent the physical constants for the two cavities. 

The terms baab

i

ee ,,   
 allow for a mutual coupling between the 

optomechanical systems similar to a linear coupled oscillator system. For 

example, when  )12(  n , 2 e , the coupling term reduces 

to
)2( ,, abbae  
, providing a restoring drive force component. Hence, 

coupled optomechanical systems with radiation force mediated interaction 

behave similar to a set of coupled non-linear oscillators29, where the 

mechanical coupling is mediated through optical fields. We will consider the 

generalisation to an array of oscillators later29 in the letter. 

 

10.3 Device Structure 

We propose an illustrative optomechanical structure where two 

optomechanical oscillators produce frequency synchronisation via long range 

mechanical radiation force mediated coupling. The device is shown in figure 
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1, where a stacked double micro-ring cavity with evanescent interaction is 

used as an example optomechanical oscillator. We consider two such 

optomechanical cavities connected optically31, 32. An optical path can be 

sustained between these cavities to provide the radiation mediated 

mechanical coupling between the cavities. Each oscillator is formed by a 

double disc micro-ring cavity with gradient field radiation force to create 

large optomechanical response. As shown in Figure. 1a, the structure is 

composed of a pair of vertically stacked micro-rings held by very thin spokes 

and a pedestal. Earlier works have shown the existance of large 

optomechanical coefficients21,26,30 ( dxdgom  ) and optomechanical 

oscillations26 in these cavities mediated by evanescent wave gradient optical 

forces. We assumed micro-ring optical cavities of radius 15 μm and 

thickness 190 nm and width 2.5 µm made in a Si3N4 material system. The 

loaded optical quality factor (λ/Δ λ) of the double ring cavity is assumed to 

be Qopt=105 with critical coupling ( wgt  2int 
). The optomechanical 

cavity is formed by two micro-ring cavities stacked on top of each other 

separated by an air gap of ~ 600 nm. Due to the relatively small refractive 

index of Si3N4  (n  2), strong optical coupling can occur for relatively large 

gaps between the top and the bottom micro-ring. Figure 2 shows an example 

of the resonance wavelength splitting for the transverse electric (TE) mode 

of a 30  µm diameter ring, obtained from numerical simulations. As a result 

of this coupling, the transverse mode profile splits into symmetric (S, inset A 

figure 2) and antisymmetric (AS, inset B, figure 2) combinations, leading to 

two distinct resonant frequencies. One can see that the optical resonance 

frequnecy of the modes ( 0 ) depends exponentially on the separation gap. 

Such steep gap dependence of the resonant frequencies on the separation 
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translates into a strong optomechanical constant ( dxdgom  ) and forcing 

function for the mechanical oscillator (See Equation 1). 

Figure 10.2. Dispersion of the Double ring Optomechanical Cavity for 
vertical displacement a) Spatial mode profile b) Optical frequency shift of 

the cavity resonant modes with displacement (Inset A) Anti-symmetric mode 
B) Symmetric mode) 

 

We show the emergence of synchronization in optomechanical systems 

where a radiation force mediated coupling is established between the two 

unlike optomechanical systems. We considered two distinct, dissimilar 

optomechanical oscillators with optomechanical oscillation frequencies of 

OscA ~54.36 MHz and OscB ~ 51.88 MHz. The natural mechanical 

frequencies of the cavities are of mA =50 MHz and mB =47.5 MHz with 

effective masses of 100 pg and mechanical quality factor Qm of 500. The 

optomechanical coupling constants were assumed to be omAk 0.515, 

omBk 0.617. The oscillation frequency of the oscillators is higher than the 

natural frequency due to optical spring effect which produces a non-linear 

frequency shift in the oscillator frequency. The optical quality factors of the 



 

157 

cavities were Qopt1 =105, Qopt2 =1.2X105. We considered both cavities to be 

critically coupled. The optomechanical cavities were pumped by a single 

optical source of power Pin= 2 mW centred at p
such that, 

2/101   apa , 
2/202   bpa . The coupling strength between 

the cavities decided by the waveguide/optical link loss ( ) will be varied to 

obtain the effect of coupling the optomechanical systems. The optical phase 

shift due to propagation over the waveguide , will also be varied to provide 

a new level of control of mechanical coupling. The numerical simulations 

were performed using an ordinary differential equation solver (ode15s) that 

can handle stiff differential equations. Normalized displacement in nm and 

energy in mJ were used to convergence. The time step is controlled by the 

solver to ensure high relative tolerances. 

 

10.4 Frequency Synchronization and controllable Mechanical 

Coupling 

We show controllable frequency locking of optomechanical oscillators 

interacting via a radiation force mediated coupling. In figure 3 A, we show 

the frequency content of the mechanical oscillations of the oscillators A and 

B.  We can see the formation of narrow peaks centered at OscA ~54.36 MHz 

and OscB ~ 51.88 MHz. As we vary the loss through the optical link section, 

the optomechanical oscillators exhibit a frequency shift due to the optically 

mediated coupling very similar to a mutual mechanical spring coupling []. As 

the coupling strength between the oscillators is increased (by controlling the 

waveguide loss), we can see the locking of frequencies at  =0.18 

(corresponding to an optical link loss of -14.9 dB). In figure 3B, we show the 

frequency content of the mechanical oscillations at  =0.18 showing 
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identical frequency content. This corresponds to a modest link optical power 

loss (20log10 ) of -14.9 dB. This corresponds to a distance range of >15 

cm in a low loss on chip platform and >100 km using optical fibers, allowing 

for mechanical coupling and synchronization between objects separated by 

large distances, with no mechanical interference with other objects in plane.  
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Figure 10.3. Frequency synchronization. A) Frequency content of the 

oscillations of A & B at zero coupling strength. B) Frequency content of the 
oscillations of A & B at 0.2 and 1 coupling.  

 

In figure 4, we show the state space diagrams of the system (x1, x2) before 

frequency synchronization and after synchronization. Figure 4 A shows the 
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limit cycle in the state space where x1, x2 exhibit un- correlated oscillations. 

Figure 4B shows the limit cycle at a coupling strengths  =0.18, 1.  
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Figure 10.4. Frequency synchronization in state space. A) Limit cycle out of 

synchronisation B) Limit cycle in synchronisation, near perfect 
synchronisation with 2.5o residual phase is obtained at strong coupling 
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Figure 10.5 A. Frequency Synchronisation of the optomechanical oscillators.  

At the coupling strength, α=0.18 (optical link insertion loss of -14.5 dB) 
oscillators A and B lock in frequency. The optical link distance can be as 

much as 15 cm (for waveguides) and 100 km for fibres. 
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Figure 10.5 B.  Phase synchronisation of the optomechanical oscillators. The 

phase difference approaches 0 asymptotically, as the coupling strength is 
increased  
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10.5 Phase Synchronization and controllable Mechanical Coupling 

Phase 

We show controllable phase of mechanical coupling between the 

synchronized oscillators by varying the phase of the optical link. An 

analogous dynamical control of the phase of mechanical coupling is 

infeasible in a micro-platform.   

 

The phase between the mechanical oscillators can be controlled by changing 

the optical phase of the optical link. In figure 6 A, we show the relative 

phase between the oscillators for varying optical phase. One can see that 

arbitrary mechanical coupling phase can be realized between the oscillators. 

In figure 6 B, we show the state space diagrams of the system (x1, x2) after 

frequency synchronization while varying the phase term of the optical link. 

We achieve near phase zero synchronization at  )3/1(  n , with a 

controllable phase lag between the oscillations. For a group index of 4, the 

phase delay corresponds to a control in the optical path length in microns 

which can also be achieved readily via modern fabrication or tuning 

techniques. 
 

In Figure 5A, we show the variation of the oscillator frequencies with 

variable coupling strength ( where 20log10  is the optical link loss). In 

Figure, 5B we show the phase lag between the oscillators as a function of the 

coupling strength. 
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 Figure 10.6. A) Optomechanical control on oscillators‘ relative phase. The 

phase difference between the oscillators can be controlled optically 
producing an effect equivalent to controlling the phase of mechanical 

coupling. 
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Figure 10.6. B) Relative phase control in state space. Optomechanical 
control of mechanical coupling phase. oscillators‘ relative phase can be 

controlled arbitrarily.  
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10.6 Synchronization of an array of optomechanical systems 

The general principles described here for optomechanical synchronization 

can be extended to two important problems: a) arrays of micro-mechanical 

systems coupled through radiation forces b) optomechanical 

resonators/filters below oscillation threshold. Optomechanical 

synchronization can be extended for a large array of oscillators by identifying 

the similarity with a generalized Vander-Pol Duffing oscillator with a 

saturable gain and a non-linear frequency pulling term31, as follows:  
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is 

the non-linear frequency shift induced by radiation pressure, A= 

mg 22 and  the white-noise Langevin function representing the noise 

sources28. Prior theoretical work in non-linear synchronization has shown 

frequency pulling in nonlinear oscillators assuming a vander-pol like 

behavior described above29 as well as the case of pulse coupled oscillators. It 

was further shown that synchronized oscillators‘ power scales with N2 while 

the noise scales with N-2 which may simultaneously enable high power and 

low noise optomechanical oscillators32.  

 

10.7 Conclusion 

The ability to control the strength, phase and frequency content of 

mechanical coupling between micro-mechanical structures can enable a new 

level of control over MEMS structures. The ability of micro-photonics to 

control the optical modes via electro-optic, thermo-optic means can now be 
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extended to switch, filter and phase shift the mechanical coupling of MEMS 

oscillators. Using optically mediated mechanical coupling will allow for 

coupling mechanical structures spread over a wide region only limited by 

optical waveguide/fiber losses. Optically mediated mechanical coupling will 

also remove the restrictions of neighborhood while creating 1D/2D/3D 

mechanical oscillator arrays. By enabling long range, directional and 

controllable mechanical coupling; synchronized optomechanical systems may 

enable a new class of devices in sensing, and signal processing & meso-scale 

quantum optomechanics. 
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