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ABSTRACT The energy and delay reductions from CMOS scaling have stagnated, motivating the search
for a CMOS replacement. Spintronic devices are one of the promising beyond-CMOS alternatives. However,
they exhibit high switching error rates of 1% or more when operated at energy and delay comparable
to CMOS, rendering them incompatible with the deterministic nature of digital implementations. In this paper,
we employ a Shannon-inspired model of computation to enhance the tolerance of all-spin logic (ASL)-based
implementations to gate-level switching errors. We develop the logic-level path delay reallocation techniques
to shape the output error statistics and propose a novel error compensation scheme to achieve 1000× higher
tolerance to device-level switching errors while maintaining the classification accuracy of an ASL-based
support vector machine (SVM) classifier.

INDEX TERMS All spin logic, beyond-CMOS, machine learning, spintronics, statistical computing.

I. INTRODUCTION

THE PAST few decades have seen tremendous improve-
ment in computational efficiency, in part, due to relent-

less CMOS scaling to achieve the improved density of tran-
sistors while reducing their switching energy and delay and
preserving nearly error-free switching behavior. However,
as the channel lengths continue to reduce beyond a few tens of
nanometers, the energy and delay reductions have stagnated.
Hence, it is of great interest to explore new computational
devices and new models of computation that leverage the
unique properties of such devices to enable continued com-
putational scaling.

In particular, spin-based computational devices built with
nanomagnets and spin-polarized transport have emerged as a
viable beyond-CMOS option, due to their following favorable
attributes: 1) nonvolatility; 2) higher logical efficiency; and 3)
high integration density and compatibility with the state-of-
the-art back-end electronics manufacturing processes. These
devices are the subsets of the beyond-CMOS devices that
include devices based on electron spin [1], [2] and magne-
toelectric [3], [4] phenomena.

However, spin-based devices are not competitive to
CMOS [5], in terms of switching energy and delay, due to
their high energy–delay requirements to achieve determin-
istic switching [6]–[9]. As the switching energy or delay
is reduced, their switching error probability increases, ren-
dering them incompatible with the required determinism
of the digital logic. Hence, multiple research efforts are
underway to improve the energy efficiency of the spin-based
implementations.

Recent attempts at improving the energy efficiency of
spin-based implementations particularly focus on exploit-
ing unique attributes of spin-based devices to efficiently
implement the machine learning algorithms. The exam-
ples include exploiting domain wall magnets for analog
multiplication [10]–[12] using racetrack memory structures
to achieve reconfigurable precision [13], efficient logic
operations and data conversion [14], [15], and analog
nature of spin currents for efficient dot-product compu-
tation [16]. Recently, researchers have also exploited the
nanomagnet stochasticity for efficient probabilistic inference
implementations. The examples include efficient realization
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of restricted Boltzmann machines [17], stochastic optimiza-
tion schemes [18], probabilistic spiking neural networks [19],
and stochastic bit-stream computing [20], [21].

In this paper, we explore how one can significantly increase
the switching error probability of spin-based logic gates
in digital implementations of machine learning classifiers
while maintaining their inference accuracy. This problem
is akin to the classical problem formulation of achieving
reliable computation using unreliable components posed by
von Neumann [22], where a reliable logic network was
defined as the one whose output exhibits a probability of
error pe < 0.5 when designed using ε-noisy logic gates,
i.e., gates whose outputs are in error with probability ε. It was
further demonstrated that a reliable logic network can be
designed for any logic function provided ε ≤ 0.0073 and
that it is impossible to do so if ε > 1/6. Later, tighter upper
bounds on ε were obtained in a series of papers [23], [24],
culminating with those of Evans and Schulman [25]. All
theseworks do not consider the fundamental tradeoff between
ε, energy, and delay and assume identical ε for all gates.
Furthermore, they rely on gate-level replication to minimize
the error probability of all intermediate binary signals in order
to achieve a small pe, leading to a prohibitive increase in the
overhead.

In this paper, we employ the Shannon-inspired model of
computation [26] to enhance the tolerance of all-spin logic
(ASL)-based classifier implementations to gate-level switch-
ing errors while maintaining their inference accuracy. In the
Shannon-inspired framework, hardware errors are engineered
and then efficiently compensated via the introduction of
tailored redundancy, in the spirit of Shannon’s theory for
communications [27]. The contributions of this paper are as
follows.

1) We characterize the ε-energy–delay tradeoff for ASL
gates to enable nonuniform ε assignments across logic
gates.

2) We propose logic-level path delay reallocation
techniques to assign appropriate error rates to
individual gates, such that the resulting output
error distributions are shaped to facilitate error
compensation.

3) We propose a novel maximum likelihood (ML) error
compensation scheme that exploits these shaped output
error statistics to compensate for the errors efficiently.

4) We demonstrate a 1000× higher average error rate
tolerance and a 3× lower energy-per-decision for
an ASL-based digital support vector machine (SVM)
implementation while maintaining its system-level
classification accuracy.

The rest of this paper is organized as follows. Section II
describes the relevant background, while Section III describes
a modified ε-noisy model to capture the gate-level tradeoff
between ε, energy, and delay. Section IV describes the pro-
posed Shannon-inspired ASL-based SVM implementation.
Section V presents the simulation results, while Section VI
concludes this paper.

FIGURE 1. ASL. (a) Diagram of clocked ASL inverter
gate [28], [29]. (b) Clocked ASL inverter symbol. (c) Clocked
ASL three-input majority gate symbol.

II. BACKGROUND
A. ALL-SPIN LOGIC DEVICE
Fig. 1(a) shows a diagram of an ASL inverter. It consists
of two nanomagnets separated by a conducting channel.
The input nanomagnet polarizes the supply current passing
through it. This creates a spin concentration gradient and
propagates the spin current in the channel. This spin current,
in turn, exerts a torque on the magnetization of the output
nanomagnet, forcing it to switch.

Since the nanomagnets and the spin channel are metallic,
the equivalent electrical resistance across the nanomagnet-
channel stack is small (few �s), enabling these devices to
operate at ultralow supply voltages. However, the electrical
current through the input nanomagnet flows irrespective of
the output activity, causing high static energy consumption.
The nanomagnets, being nonvolatile, retain themagnetization
vector state even when the supply current is switched OFF.
Hence, [29] and [28] propose to clock these devices via a
MOSFET, operating in the linear region, which acts as a
switch, turning ON the ASL device only when it needs to com-
pute, as shown in Fig. 1(a). The ON duration Tg of the clock
can be externally controlled for each gate. Thus, the energy
consumption of the clocked ASL gates is completely deter-
mined by Tg and the ON current of the gating MOSFET.
Fig. 1(b) and (c) shows the logical symbols for the clocked
ASL inverter and the three-input majority gate, respectively.
Reference [28] proposed to share a single MOSFET across
multiple nanomagnets by electrically stacking their supply
terminals in series to significantly amortize the clock pulse
generation and MOSFET switching overheads. In this paper,
we assume such amortization described in [28] and focus on
the impact of gate-level switching errors on the final output.

B. SUPPORT VECTOR MACHINE
Linear SVM [30] is a simple and popular machine learning
algorithm for binary classification. The SVM learns a hyper-
plane to separate the training feature vectors into two regions,
each corresponding to one class, as shown in the following:

wT x+ b
ẑ=1
R

ẑ=−1

0

where w and b denote the trained weight vector and bias rep-
resenting the separating hyperplane, respectively, x denotes
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the N -dimensional input feature vector, and ẑ denotes the
predicted label. If the true label is denoted by z, the accuracy
of SVM is given by the probability of the classification error
pe = Pr{ẑ 6= z}, which can be empirically estimated for a
given data set.

FIGURE 2. Shannon-inspired model of computation. (a) Model.
(b) SEC. (c) ANT, a special case of SEC, where the error
compensator combines two unreliable outputs ya and ye.
(d) Illustrative distributions of computational error η, estimation
error e that lead to a low-complexity and accurate error
compensator.

C. SHANNON-INSPIRED MODEL OF COMPUTATION
The Shannon-inspired model of computation [26] [see
Fig. 2(a)] comprises an encoder, a noise-free computation of
the desired correct output Yo = f (X ) being corrupted by
the noise in nanoscale fabrics parameterized by variable η
to generate the observed output Y = f (X; η) of the error-
prone device fabric (the channel), followed by the decoder
that recovers the corrected output Ŷ . In Fig. 2(a), all variables
(X ,Yo, η,Y , Ŷ ) are random variables. In this paper, we use
capital letters to denote random variables and small letters
to denote their particular instance. For example, Y denotes a
random variable, while y denotes a specific value of Y .

Statistical error compensation (SEC) [see Fig. 2(b)], one
class of the design techniques within the Shannon-inspired
framework [26], [31], introduces a statistical error compen-
sator block as a decoder, which combines multiple unreliable
outputs Y1, . . . ,Yn to compute the corrected output Ŷ . Algo-
rithmic noise tolerance (ANT) [see Fig. 2(c)] is a special case
of SEC, where the error compensator combines two unreli-
able outputs ya and ye. ANT consists of the main block (MB)
designed using unreliable/noisy device fabric that accounts
for 85%–90% of the total gate count complexity. It strives to
compute correct output yo but ends up computing ya due to the
unreliability of the underlying device fabric. ANT augments
the MB with a low complexity estimator that computes an
estimate ye of the correct output yo. Under the assumption of
the additive noise model, the MB and estimator outputs are
described as follows:

ya = yo + η (1)

ye = yo + e (2)

where η is a system-level hardware error observed at the MB
output and e is the estimation error incurred due to inherent
lower complexity of the estimator.

The estimator and the error compensator are designed
using reliable, and hence energy-inefficient, circuits, con-
stituting the error compensation overhead in ANT. Hence,
their combined complexity (in terms of gate count) needs to
be significantly (≈5–10×) smaller than the MB. Previously,
it has been shown that the complexity of the error compen-
sator can be reduced by shaping the distributions of η and e,
Pη(η), and Pe(e), respectively, to be disparate from each
other, as shown in Fig. 2(b) and (c) [32]–[34]. In particular,
a dense Pe(e) is realized by introducing a reduced-precision
estimator, while a sparse Pη(η) is realized by permittingMSB
errors in the LSB-first architectures [33]–[36]. Various design
techniques to reduce the overhead of the estimator and the
error compensator have been proposed [35]–[38].

D. MUTUAL INFORMATION
The mutual information (MI) I (X;Y ) between two random
variables X and Y quantifies the amount of information con-
veyed about X by knowing the value of Y , and vice versa. The
MI I (X;Y ) is defined as follows:

I (X;Y ) = H (X )− H (X |Y ) = H (Y )− H (Y |X ) (3)

where H (X ) and H (X |Y ) denote the entropy of X and condi-
tional entropy of X , given Y , respectively. The entropy H (X )
of a random variable X quantifies the uncertainty about the
value of X and is a function of its probability distribution.
In this paper, we use MI metric to show that the Shannon-
inspired model of computation (see Fig. 2) enhances the MI
I (Yo;Ya,Ye), thereby enabling an accurate recovery of yo
from ya and ye.

III. MODELING STOCHASTICITY OF ASL DEVICES
In this section, we develop a gate-level model to capture the
inherent device-level stochasticity of ASL at the circuit and
architecture levels. Even after receiving the supply current
ION (> Icrit) at the input nanomagnet, the output nanomagnet
of the ASL gate may not switch due to the presence of the
Langevin thermal noise [6]–[9], where Icrit denotes the min-
imum current required for nanomagnetic switching. In this
paper, we refer to this probabilistic event as the switching
error and its probability ε as the switching error rate. In [6],
an analytical expression for ε was derived by employing the
Fokker–Planck equation for magnetization vector switching
dynamics governed by the fundamental LLG equation and
was validated against the Landau–Lifshitz simulations of a
macrospin including appropriate thermal field. This analysis
indicates a gate-level tradeoff between switching error rate ε,
the switching energy Eg, and the switching delay Tg of the
ASL gates.
Fig. 3 shows the isoerror rate delay versus energy con-

tours of an ASL inverter at various error rates. As expected,
the error rate decreases with increasing energy or delay.
In fact, when ION � Icrit, the expression for ε [6] can be
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FIGURE 3. Tradeoff between switching error rate ε, switching
energy Eg, and switching delay Tg for a clocked ASL inverter
gate.

FIGURE 4. Modified ε-noisy gate model for clocked ASL.
(a) Gate-level schematic emulating the stochastic behavior of a
nonvolatile, clocked ASL three-input majority gate. (b) Timing
diagram illustrating the phase, where the gate is ON and OFF.

simplified via the Taylor series approximation (as shown in
Section I in the Supplementary Material) to

ε(Eg,Tg) = β exp
(
−ζ
√
EgTg

)
(4)

where β and ζ are the device-dependent constants described
in Section I in the Supplementary Material. A three-input
majority ASL gate operates with an error rate of ε(Eg,Tg),
if all its inputs are equal, and with higher error rate of
ε(Eg/3,Tg), otherwise. In this paper, we conservatively
upper-bound the error rate of three-input majority gate to
ε(Eg/3,Tg). Equation (4) explains the observed linearity of
the contours at higher values of Eg or Tg in Fig. 3. We further
note that ASL inverter consumes 8× more energy compared
to the 20-nm CMOS FO4 inverter [2] at ε = 10−14 and at
identical switching delays. Hence, ASL-based conventional
digital architectures remain noncompetitive with respect to
the present day CMOS.As ε is increased beyond 1%, theASL
inverter becomes more energy efficient than CMOS, demon-
strating the potential for achieving energy efficiency, if one
can tolerate such high gate-level error rates while maintaining
the final system-level accuracy.

We develop a modified ε-noisy gate model [see Fig. 4(a)]
to describe a clocked ASL gate, which comprehends its
underlying stochastic behavior while being sufficiently
abstract to permit the design and the analysis of complex
ASL networks. The modified ε-noisy gate model captures:
1) the logic-level manifestation of device-level stochasticity;

2) the input dependence of ASL errors due to the nonvolatility
of the nanomagnets, i.e., the ASL gate makes an error only
when the output nanomagnet fails to switch when it should,
implying a dependence of the error event on the input data;
and 3) the role of the CLK terminal in the gate operation.

Fig. 4(b) shows the timing diagram for the modified
ε-noisy model. The Boolean inputs A, B, and C are applied
at time t . The ASL gate generates its output Y at time t + Tg,
where Tg is the switching delay assigned to the ASL gate. The
model comprises of an ideal noise-free Boolean gate whose
output Mt = maj{At ,Bt ,Ct } is EXORed with a Bernoulli
random variable θ with parameter ε, i.e., Pr{θ = 1} = ε. The
output selector [implemented using amultiplexer in Fig. 4(b)]
computes the final output Yt+Tg by choosing either the output
of the EXOR gate Mt ⊕ θ or the error-free output Mt . The D
flip-flop models the nonvolatility, i.e., the ability to retain the
output when CLK = 0. The EXOR gate output is chosen only
if Yt 6= Mt , capturing the fact that the switching error can
occur only if the output nanomagnet is required to switch.

IV. SHANNON-INSPIRED ASL ARCHITECTURE
In this section, we describe how the Shannon-inspired
approach can be applied to clocked ASL networks to increase
their tolerance for switching errors. In Section IV-A, we pro-
pose the path delay reallocation techniques that exploit
the gate-level tradeoff between ε, Eg, and Tg to shape
the output error statistics and, thereby, ease error recovery.
In Section IV-B, we propose a novel fusion block architecture
to compensate for the switching errors.

A. SHAPING ERROR STATISTICS
In clocked digital ASL networks, the random switching
errors occur at the output of every logic gate, as modeled in
Section III. The impact of such gate-level errors accumulates
as the input propagates to the final output. For example,
consider a clocked ASL-based 8-bit ripple carry adder (RCA)
consisting of all ASL gates operating at identical switching
delay Tg, switching energy per nanomagnet Eg, and, hence,
identical ε(Eg,Tg), as shown in Fig. 5(a). The resulting distri-
bution Pη(η) of the output error η for a 15-bit RCA is dense,
as shown in Fig. 5(b) and (c), for ε(Eg,Tg) = 10−2 and
ε(Eg,Tg) = 10−1, respectively. The Brute force compensa-
tion of the errors having such distributions can be computa-
tionally expensive, as discussed in Section IV-B. We propose
error statistics shaping techniques to impose a structure on
Pη(η) to reduce the complexity of error compensation.

We exploit the error rate, energy, and delay tradeoff of the
clocked ASL gates (shown in Fig. 3) to shape the distribution
of error η. In particular, we control the gate-level switch-
ing delay via clock pulsewidth modulation, as described
in Section II-A [28], [29]. Exploiting this degree of free-
dom, we propose two logic-level delay assignment steps,
namely, path delay balancing (PDB) and path delay redistri-
bution (PDR). We begin with a logic gate network with all
gate delays equal to Tg. Thus, the critical paths are those with
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FIGURE 5. RCA with gate-level uniform error rate ε assignment operating at total delay of 1.24 ns. (a) Schematic of 8-bit RCA showing
all gates operating at ε = εcp-avg = 10−2. Error distribution Pη(η) for a 15-bit RCA (b) when ε = εcp-avg = 10−2 and ERCA15 = 90 fJ, and
(c) when εcp-avg = 10−1 and ERCA15 = 60 fJ, where ERCA15 denotes total switching energy of 15-bit RCA.

FIGURE 6. RCA with shaped error statistics operating at the total delay of 1.24 ns. (a) Schematic of an 8-bit RCA illustrating spatial
distribution of gate-level ε after applying PDB and PDR. Error distribution Pη(η) for a 15-bit RCA (b) when εcp-avg = 10−2 and
ERCA15 = 90 fJ, and (c) when εcp-avg = 10−1 and ERCA15 = 60 fJ. The colors in (a) approximately convey the error rates of the gates as
per the color code in Fig. 3.

the maximum number of gates Ncp and, therefore, have the
path delay Tcp = TgNcp. In PDB and PDR steps, the gate
delays are reassigned at a constant switching energy (per
nanomagnet) of Eg (moving vertically in Fig. 3) and at a con-
stant throughput (identical critical path delay Tcp) as follows.

1) PDB
In PDB, delays of gates lying on the shorter paths are
increased, at a constant energy Eg, making every gate to lie on
one or more critical paths. Thus, PDB reduces the error rate of
the Xgates on shorter paths while leaving the original critical
path unaltered and now containing gates with the highest error
rates.

2) PDR
In PDR, the gate delays along all critical paths are further
redistributed to further enhance the sparsity of Pη(η) while
keeping their path delay constant. In particular, the delays of
the few gates in the middle of the critical path are increased
(lowering ε) at the expense of the reduction in the delays
(increasing ε) of the gates lying at the beginning and at the
end of the critical path. Such delay redistribution increases
the error rates of the top few MSBs and bottom few LSBs
while reducing the error rates of the other bits in the middle.
Doing so results in the increased probability of errors having
extreme magnitudes (both very high and very low), leading
to a highly sparse Pη(η).

Section IV in the Supplementary Material describes PDB
and PDR algorithms in detail. We define the average device

error rate of the clocked ASL network as εcp-avg =

ε(Eg,Tcp-avg), where Tcp-avg = Tcp/Ncp. Note that Tcp-avg =
Tg when all gates on the critical path have equal delay.
Fig. 6(a) illustrates the spatial distribution in gate-level
switching error rates (employing the color code from Fig. 3)
for an 8-bit clockedASL-basedRCAafter applying both PDB
and PDR. The resulting Pη(η) for a 15-bit RCA subject to
PDB and PDR is shown in Fig. 6(b) and (c) for εcp-avg =
10−2 and εcp-avg = 10−1, respectively. Compared to the
distributions in Fig. 5(b) and (c), the distributions in Fig. 6(b)
and (c) are sparse, i.e., they have distinct well-separated peaks
with relatively smaller spread around them.

Next, we show that the error statistics shaping via PDB
and PDR preserves the information in the erroneous output
ya about the correct output yo, which can be quantified via
the MI I (Ya;Yo). We empirically estimate I (Ya;Yo) for the
15-bit RCA example in Figs. 5 and 6. For an error-free RCA,
I (Ya;Yo) = 13.98 bits, which drops to 6.18 bits, with all gates
are operating at an identical error rate of εcp-avg = 10−1.
The resulting Pη(η) in Fig. 5(c) is dense. The shaped error
statistics in Fig. 6(c) enhances MI I (Ya;Yo) to 11.15 bits.
Noted that there exist multiple methods of shaping Pη(η) to
increase the MI. Furthermore, a high value of I (Ya;Yo) only
guarantees the existence of an error compensation scheme
to reliably recover yo from ya. However, such scheme need
not to be efficient. In Section IV-B, we derive a near-optimal
low-complexity error compensation scheme that exploits the
sparsity of Pη(η).
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FIGURE 7. ML error compensation. (a) Illustrative Pη(η)
consisting of seven distinct peaks. (b) Illustrative Pe(e).
(c) Corresponding fc(yae, ηi ) defined in (8).
(d) TreeCompensator, the resulting ML error compensator
having a decision tree structure.

B. MAXIMUM LIKELIHOOD ERROR COMPENSATOR
The role of the fusion block in SEC is to compute the estimate
ŷ of the correct output yo, as a function of two error-prone
observations ya and ye [see Fig. 2(a)]. One approach to make
ŷ a good estimate of yo is to choose ŷ, such that it maximizes
the likelihood of the observations ya and ye, as follows:

ŷ = argmax
y
PYa,Ye|Yo

{
Ya = ya,Ye = ye

∣∣∣∣Yo = y
}

(5)

where PYa,Ye|Yo denotes the likelihood of Ya and Ye given Yo
and y denotes a free variable in the maximization that is swept
over the range of possible values of correct output yo. Thus,
ŷ is an ML estimate of yo. In general, it can be computa-
tionally expensive to compute and maximize PYa,Ye|Yo . How-
ever, the error statistics shaping described in Section IV-A
significantly reduces the computation of the ML estimate ŷ,
as shown in the following.

Noting the independence of η and e conditioned on Yo
in (5), we get

ŷ = argmax
y
Pη(ya − y)Pe(ye − y) (6)

and we employ parametric models for Pη(η) and Pe(e) [35],
as shown in Fig. 7(a) and (b), respectively, to simplify (6) to

ŷ = ya − η̂ (7)

with η̂ given as

η̂ = argmax
ηi

pi1{ηi−L<yae<ηi+L}fe(−yae + ηi)︸ ︷︷ ︸
fc(yae,ηi)

 (8)

where yae = ya − ye = η − e, Pr{η = ηi} = pi, mini,j |ηi −
ηj| = d , Pr{|e| < L} = 1, and fe denotes a functional

description of Pe when |e| < L. Detailed derivation of (7)
and (8) is given in Section I in the Supplementary Material.

Given ya and ye, a Brute force computation of the ML
estimate ŷ requires evaluating (7) by calculating the RHS
of (8) for every ηi and selecting ηi = η̂ that maximizes
it. Fig. 7(c) illustrates the plots of fc(yae, η) as a function
of yae for all values of η. It can be observed that η̂ can be
approximately computed via comparisons of yae with thresh-
olds τis. Thus, the ML error compensator has a decision tree
structure, as shown in Fig. 7(d), and is henceforth referred to
as a TreeCompensator. The thresholds τis in the TreeCom-
pensator are the function of error distributions Pη and Pe.
For a given implementation, these distributions can be char-
acterized once, either during simulations, or during one-time
calibration phase of the prototype chip. Once the thresholds
are computed offline and stored, the TreeCompensator can be
implemented efficiently using only a few subtracters.

FIGURE 8. Digital clocked ASL-based 120-D SVM classifiers.
(a) Conventional serial architecture with uniform delay
assignments. (b) Shannon-inspired architecture.

C. DIGITAL CLOCKED ASL-BASED
DOT-PRODUCT IMPLEMENTATIONS
Fig. 8(a) shows the conventional serial architecture of an
120-D SVM classifier. It employs 8-bit signed Baugh–
Wooley multipliers (BWMs) and a carry save adder (CSA).
All gates in this architecture operate at identical error rates.
The Shannon-inspired architecture in Fig. 8(b) employs the
conventional serial architecture as the MB and applies PDB
and PDR to shape its output error distribution. Since PDB
and PDR techniques make some gates operate at lower error
rate, few reliable intermediate signals in BWMs can be
employed as the estimates of the BWM outputs indicated
via green reduced-precision embedded estimator (RPE-EST)
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FIGURE 9. Accuracy versus energy, error rate tradeoff for different digital clocked ASL-based 120-D SVM classifier implementations
operating at a fixed decision delay and pFA of 1%. (a) TP rate pTP versus average device error rate εcp-avg. (b) pTP versus total classifier
energy per decision. (c) MI I(Yo;Y ) and corresponding classification error rate (1− pTP) versus εcp-avg curves for serial
architecture (black line), after shaping its error η statistics (blue line), and Shannon-inspired architecture (red line).

blocks in BWMs, similar to techniques discussed in [36]
to reduce the estimator overhead. The additional overhead
consists of a CSA and a digital clocked ASL implementation
of the TreeCompensator derived in Section IV-B to compute
the error compensated output ŷ. The bit precisions in the
estimator and the compensator blocks are primarily dictated
by the number of dominant peaks in the sparse shape of the
η distribution of the MB. The CSA and the compensator
overhead amount to 11% of the gate complexity of the MB.
We assume a low error rate ε = 10−4εcp-avg for all the
gates in the CSA and the TreeCompensator [marked green
in Fig. 8(b)]. We assume that the TreeCompensator compu-
tation can be pipelined since it operates only on the final
outputs of the MB and the estimator. This allows the gates
in the TreeCompensator to operate at lower energy since its
critical path is shorter than that of the MB. More details of
the Shannon-inspired architecture are described in Section II
in the Supplementary Material.

V. SIMULATION RESULTS
We demonstrate the benefits of the Shannon-inspired model
of computation for a digital clockedASL architecture of SVM
classifier used for the electroencephalogram (EEG)-based
seizure detection. The accuracy of the classifier is captured
in terms of true positive (TP) rate pTP and false alarm (FA)
rate pFA, where pTP = Pr{ẑ = 1|z = 1} and pFA = Pr{ẑ =
1|z = 0}, and the probabilities are estimated empirically (via
leave-one-out cross validation) [39] for the MIT-CHB EEG
data set [40] by running extensive Monte Carlo simulations.
We compare the Shannon-inspired architecture [see Fig. 8(b)]
with: 1) clocked ASL-based conventional serial architec-
ture [see Fig. 8(a)] consisting of 54 332 gates; 2) clocked
ASL-based 3-MR architecture that which replicates the con-
ventional serial architecture thrice and takes a bitwise major-
ity vote on their outputs; and 3) 20-nmLVCMOS architecture
that consists of exact same full adder-level logic network as
that of the serial architecture. We compare pTP versus energy
per decision and εcp-avg tradeoffs at a fixed decision delay
of 9.7 ns and pFA = 1%. Detailed simulation methodology is
described in Section III in the Supplementary Material.

A. ACCURACY VERSUS εcp-avg AND ENERGY TRADEOFF
Weobserve in Fig. 9(a) that the Shannon-inspired architecture
[see Fig. 8(b)] can tolerate 1000× higher εcp-avg compared
to the conventional serial architecture [see Fig. 8(a)] while
maintaining pTP close to that of the fixed point ideal error-
free architecture. In particular, pTP for the Shannon-inspired
architecture is close to 93% even though εcp-avg is as high
as 1%. The 3-MR architecture tolerates an εcp-avg up
to 0.01%. It is greater than that of the serial architecture
but worse by 100× when compared to the Shannon-inspired
architecture. Furthermore, we show that the intermediate
estimator-only output [ye in Fig. 8(b)] achieves lower accu-
racy, emphasizing the requirement to combine the two erro-
neous outputs [ya and ye in Fig. 8(b)] to achieve close-to-ideal
accuracy.

The Shannon-inspired architecture achieves a 3× lower
energy compared to the conventional serial architecture [see
Fig. 9(b)] while maintaining pTP = 93%. The 3-MR archi-
tecture, however, consumes 2.3×more energy than the serial
architecture even though it operates at higher device error
rate. This is because the energy overhead of replication off-
sets the energy reduction achieved by operating at a higher
device error rate. However, despite its high error tolerance,
the Shannon-inspired architecture still requires 1.7× more
energy compared to the 20-nm LVCMOS architecture, point-
ing to the need to explore devices with improved energy ver-
sus error rate tradeoffs and/or the use of increasingly powerful
SEC techniques [41]–[43]. We also note in Fig. 9(b) that
the estimator block [consisting only of the green CSA block
in Fig. 8(b)] consumes 20% of the total energy [‘‘Estimator
Only’’ curve in Fig. 9(b)].

The reason for the effectiveness of the Shannon-inspired
model in compensating for errors is the enhancement in MI
I (Yo;Ya) due to error statistics shaping via PDB and PDR,
as shown in Fig. 9(c). Despite error statistics shaping,
ya remains a poor estimate of yo, as evident from its high
classification error rate (1 − pTP). Since I (Yo;Ya) is high,
it implies that Yo can be estimated accurately from Ya. How-
ever, such an error compensator need not be efficient. Hence,
in the Shannon-inspired model, we rely on two error-prone
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FIGURE 10. Impact of nonidealities and process variations on the Shannon-inspired implementation. (a) pTP versus εcp-avg tradeoff for
the Shannon-inspired implementation having 46 distinct clock pulsewidths. (b) pTP box plot for different levels of static within-die
process variations measured in terms of σ/µ Eb, α, and ION for the Shannon-inspired implementation having 46 distinct clock
pulsewidths. (c) pTP box plot as a function of extent of dynamic clock network variations β/Tg,min for the Shannon-inspired
implementation having 46 distinct clock pulsewidths and σ/µ of Eb, α, and ION set at 4%, 5%, and 7%, respectively.

observations ya and ye to estimate yo both efficiently and
accurately. The MI I (Yo; Ŷ ) is even higher than I (Yo;Ya) due
additional information about yo contributed by ye.

B. IMPACT OF NONIDEALITIES AND
PROCESS VARIATIONS
Next, we evaluate the tolerance of the proposed Shannon-
inspired architecture to various practical nonidealities, such
as a finite number of distinct clock pulsewidths, process
variations, and clock pulsewidth variations. While PDB and
PDR can potentially assign a unique delay to each gate,
in practice, those delays need to be further quantized to take
one value out of the finite set of available distinct clock
pulsewidths. Fig. 10(a) shows the pTP versus εcp-avg curves for
the Shannon-inspired architecture after quantizing the ideal
clock pulsewidths to 46 distinct pulsewidths for the SVM
implementation [see Fig. 8(b)] consisting of 54 332 gates.
The number of distinct clock pulsewidths is of the same
order as the number of gating domains explored in [28].
We observe negligible deterioration in the accuracy of the
Shannon-inspired architecture (in εcp-avg < 1% regime).
Such gate clock pulsewidth quantization enables amortization
of the clock pulse generation circuitry, including the sharing
of the clocking transistors across different nanomagnets [28].
The clock network design is further simplified, since the
quantized clock pulsewidths are integer multiples of the
shortest reference clock, and multiple parallel dot products
(in applications, such as filter banks and neural networks) can
share a single clock generation circuitry.

Process variations present an additional challenge in
beyond-CMOS systems. We evaluate the tolerance of the
Shannon-inspired approach to static within-die variations in
three device parameters, namely, energy barrier Eb, damping
coefficient α of the nanomagnets, and clocking transistor
ON current ION. We observe in Fig. 10(b) that the Shannon-
inspired architecture with quantized clock pulsewidths can
tolerate a 3(σ/µ) variations of up to 24% in each of the three
device parameters. When dynamic variations in the clock
pulsewidths are included in addition to their quantization and

process variations, we find in Fig. 10(c) that the Shannon-
inspired architecture can tolerate a maximum deviation (β)
of 20% of the minimum clock pulsewidth (Tg,min).

VI. DISCUSSION
In this paper, we demonstrated the benefits of employing
the Shannon-inspired model of computation to enhance the
tolerance of digital clocked ASL implementations to random
gate-level switching errors. While it improves the energy
efficiency of digital clocked ASL-based implementations,
the same approach can be applied to many other spintronic
devices, such as MESO [3] and CoMET [4], as long as they
use nanomagnet switching for information processing. The
Shannon-inspired techniques have been previously applied
to CMOS implementations to further reduce their energy
consumption via voltage overscaling [32], [42]. In contrast,
ASL/spintronics provides a new way of trading of stochastic-
ity with energy by realizing this energy-accuracy tradeoff at
the device level. The Shannon-inspired approach can enhance
the ability to perform reliable computation on stochastic
device fabrics to enable the use of a highly error prone but
scalable physical device.
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