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Abstract: For the benefit of designing scalable, fault resistant optical neural networks (ONNs),
we investigate the effects architectural designs have on the ONNs’ robustness to imprecise
components. We train two ONNs – one with a more tunable design (GridNet) and one with
better fault tolerance (FFTNet) – to classify handwritten digits. When simulated without any
imperfections, GridNet yields a better accuracy (∼ 98%) than FFTNet (∼ 95%). However, under
a small amount of error in their photonic components, the more fault tolerant FFTNet overtakes
GridNet. We further provide thorough quantitative and qualitative analyses of ONNs’ sensitivity
to varying levels and types of imprecisions. Our results offer guidelines for the principled design
of fault-tolerant ONNs as well as a foundation for further research.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Motivated by the increasing capability of artificial neural networks in solving a large class of
problems, optical neural networks (ONNs) have been suggested as a low power, low latency
alternative to digitally implemented neural networks. A diverse set of designs have been
proposed, including Hopfield networks with LED arrays [1], optoelectronic implementation
of reservoir computing [2, 3], spiking recurrent networks with microring resonators [4, 5],
convolutional networks through diffractive optics [6], and fully connected, feedforward networks
using Mach-Zehnder interferometers (MZIs) [7].
We will focus on the last class of neural networks, which consist of alternating layers of

modules performing linear operations and element-wise nonlinearities [8]. The N-dimensional
complex-valued inputs to this network are represented as coherent optical signals on N single-
mode waveguides. Recent research into configurable linear optical networks [9–13] enables the
efficient implementation of linear operations with photonic devices. These linear multipliers,
layered with optical nonlinearities form the basis of the physical design of ONNs. In Sec. 2, we
provide a detailed description of two specific architectures – GridNet and FFTNet – both built
from MZIs.
While linear operations are made much more efficient with ONNs in both power and speed,

a major challenge to the utility of ONNs lies in their susceptibility to fabrication errors and
other types of imprecisions in their photonic components. Therefore, realistic considerations of
ONNs require that these imprecisions be taken into account. Previous analyses of the effects of
fabrication errors on photonic networks were in the context of post-fabrication optimization of
unitary networks [14–16]. Our study differs in three main areas.
First, In the previous work, unitary optical networks were optimized to simulate randomly
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sampled unitary matrices. We, instead, train optical neural networks to classify structured
data. ONNs, in addition to unitary optical multipliers, include nonlinearities, which add to its
complexity.

Second, rather than optimization towards a specific matrix, the linear operations learned for the
classification task is not, a priori, known. As such, our primary figure of merit is the classification
accuracy instead of the fidelity between the target unitary matrix and the one learned.
Lastly, the aforementioned studies mainly focused on the optimization of the networks after

fabrication. The imprecisions introduced generally reduced the expressivity of the network –
how well the network can represent arbitrary transformations. Evaluation of this reduction in
tunability and mitigating strategies were provided. However, such post-fabrication optimization
requires the characterization of every MZI, the number of which scales with the dimension (N)
of the network as N2. Protocols for self configuration of imprecise photonic networks have
been demonstrated [17, 18]. While measurement of MZIs were not necessary in such protocols,
each MZI needed to be configured progressively and sequentially. Thus, the same N2 scaling
problem remained. Furthermore, if multiple ONN devices are fabricated, each device, with
unique imperfections, has to be optimized separately. The total computational power required,
therefore, scales with the number of devices produced.

In contrast, we consider the effects of imprecisions introduced after software training of ONNs
(Code 1 [19]), details of which we present in Sec. 3. This pre-fabrication training is more scalable,
both in network size and fabrication volume. An ideal ONN (i.e., one with no imprecisions) is
trained in software only once and the parameters are transferred to multiple fabricated instances
of the network with imprecise components. No subsequent characterization or tuning of devices
are necessary. In addition to the benefit of better scalability, fabrication of static MZIs can be
made more precise and cost effective compared to re-configurable ones.

We evaluate the degradation ofONNs from their ideal performanceswith increasing imprecision.
To understand how such effects can be minimized, we investigate the role that the architectural
designs have on ONNs’ sensitivity to imprecisions. The results are presented in Sec. 4.1.
Specifically, we study the performance of two ONNs in handwritten digit classification. GridNet
and FFTNet are compared in their robustness to imprecisions. We found that GridNet achieved a
higher accuracy (∼ 98%) when simulated with ideal components compared to FFTNet (∼ 95%).
However, FFTNet is much more robust to imprecisions. After the introduction of realistic levels
of error, the performance of GridNet quickly degrades to below that of FFTNet. We also show,
in detail, the effect that specific levels of noise has on both networks.

In Sec. 4.2, we demonstrate that this is due to more than the shallow depth of FFTNet and that
FFT-like architectures is more robust to error when compared to Grid-like architectures of the
same depth.

In Sec. 4.3, we investigate the effects localized imprecisions have on the network by constraining
the imprecisions to specific groups of MZIs. We demonstrate that the network’s sensitivity to
imprecisions is dependent on algorithmic choices as well as its physical architecture.
With a growing interest in optical neural networks, a thorough analysis of the relationship

between ONNs’ architecture and its robustness to imprecisions and errors is necessary. From the
results that follow, in this article, we hope to provide a reference and foundation for the informed
design of scalable, error resistant ONNs.

2. Physical design of optical neural networks

The ONN consists of multiple layers of programmable optical linear multipliers with intervening
optical nonlinearities (Fig. 2). The linear multipliers are implemented with two unitary multipliers
and a diagonal layer in the manner of a singular-value decomposition (SVD). These are, in turn,
comprised of arrays of configurable MZIs, which each consist of two phaseshifters and two
beamsplitters (Fig. 1(a)).
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Fig. 1. a) A schematic of a universal 8 × 4 optical linear multiplier with two unitary
multipliers (red) consisting of MZIs in a grid-like layout and a diagonal layer (yellow). The
MZIs of GridUnitary multipliers are indexed according to their layer depth (l) and dimension
(d). Symbols at the top represent the mathematical operations performed by the various
modules. Inset: A MZI with two 50:50 beamsplitters and two tunable phaseshifters b) An
FFT-like, non-universal multiplier with FFTUnitary multipliers (blue).

Complex-valued N−dimensional input vectors are encoded as coherent signals on N waveguides.
Unitary mixing between the channels is effected by MZIs and forms the basis of computation for
ONNs. A single MZI consists of two beamsplitters and two phaseshifters (PS) (Fig. 1(a) inset).
While the fixed 50:50 beamsplitters are not configurable, the two phaseshifters, parameterized by
θ and φ, are to be learned during training. Each MZI is characterized by the following transfer
matrix (see App. A for details):

UMZ (θ, φ) = UBSUPS(θ)UBSUPS(φ) = ieiθ/2 ©­«
eiφ sin θ

2 cos θ2
eiφ cos θ2 − sin θ

2

ª®¬ . (1)

Early work has shown that universal optical unitary multipliers can be built with a triangular
mesh of MZIs [9]. These multipliers enabled the implementation of arbitrary unitary operations
and were incorporated into the ONN design by Shen et al. [7]. Its asymmetry prompted the
development of a symmetric grid-like network with more balanced loss [10]. By relaxing
the requirement on universality, a more compact design, inspired by the Cooley-Tukey FFT
algorithm [20], has been proposed [11]. It can be shown that FFT transforms, and therefore
convolutions, can be achieved with specific phase configurations (see appendix H). We allow the
phase configurations to be learned for implementation of a greater class of transformations.
In this section, we focus on the last two designs, referring to them as GridUnitary (Fig. 1(a))

and FFTUnitary (Fig. 1(b)), respectively. GridUnitary can implement unitary matrices directly by
setting the phaseshifters using an algorithm by Clements et al. [10]. Despite being non-universal
and lacking a decomposition algorithm, FFTUnitary can be used to reduce the depth of the
unitary multipliers from N to log2(N). Reducing the number of MZIs leads to lower overall
noise and loss in the network. However, due to the FFT-like design, waveguide crossings are
necessary. To overcome this challenge, low-loss crossings [21] or 3D layered waveguides [22,23]
could be utilized.
MZIs can also be used to attenuate each channel separately without mixing. This way, a

diagonal multiplier can be built. Because signals can only be attenuated by MZIs, subsequent
global optical amplification [24] is needed to emulate arbitrary diagonal matrices. Through SVD,
a universal linear multiplier can be created from two unitary multipliers and a diagonal multiplier
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(Fig. 1(a)). Formally, a linear transformation represented by matrix M can be decomposed as

M = β ·UΣV†. (2)

Here both U and V† are unitary transfer matrices of GridUnitary multipliers while Σ represents a
diagonal layer with eigenvalues no greater than one. β is a compensating scaling factor.
Along with linear multipliers, nonlinear layers are required for artificial neural networks.

In fact, the presence of nonlinearties sets the study of ONNs apart from earlier research in
linear photonic networks [25]. One possible implementation is by saturable absorbers such as
monolayer graphene [26]. This is has the advantage of being easily approximated with a Softplus
function (see Sec. 3 for details on implementation). However, it has been demonstrated that
Softplus underperforms, in many regards, when compared to rectified linear units (ReLU) [27].
Indeed, a complex extension of ReLU, ModReLU, has been proposed [28]. While it is physically
unrealistic to implement ModReLU, the nonoptimality of Softplus functions still motivates the
exploration of other optical nonlinearities, such as optical bistability in microring resonators [29],
and two-photon absorption [30, 31] as alternatives.

3. Neural network architecture and software implementation
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Fig. 2. Network design used for the MNIST classification task. GridNet used universal
unitary multipliers while FFTNet used FFT-Unitary multipliers. See Fig. 1 for details of
physical implementation of the three linear layers.

We considered a standard deep learning task of MNIST handwritten digit classification [32].
Fully connected feedforward networks with two hidden layers of 256 complex-valued neurons
each were implemented with GridNet and FFTNet architectures (Fig. 2) and simulated in
PyTorch [33]. The 282 = 784 dimensional real-valued input was converted into 392 = 784/2
dimensional complex-valued vectors by taking the top and bottom half of the image as the real
and imaginary part. This was done to ensure the data is distributed evenly throughout the complex
plane rather than just along the real number line.
Each network consists of linear multipliers followed by nonlinearities. The linear layers of

GridNet and FFTNet were described in the previous section and illustrated in Fig. 1. The
response curve of the saturable absorption is approximated by the Softplus function [34] (App.
C), a commonly used nonlinearity available in most deep learning libraries such as PyTorch. The
nonlinearity is applied to the modulus of the complex numbers. A modulus squared nonlinearity
modeling an intensity measurement is then applied. The final SoftMax layer allows the (now
real) output to be interpreted as a probability distribution. A cross-entropy [35] loss function is
used to evaluate the output distribution against the ground truth.

An efficient implementation of GridNet requires representing matrix-vector multiplications as
element-wise vector multiplications [36]. Nevertheless, training the phaseshifters directly was
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still time consuming. Instead, a complex-valued neural network [37] was first trained. An SVD
(Eq. (2)) was then performed on each complex matrix. Finally, phaseshifters were set to produce
the unitary (U,V†) and diagonal (Σ) multipliers through a decomposition scheme by Clements et
al. [10].
However, note that SVD is ambiguous up to permutations (Π) of the singular values and the

columns of U and V .

UΣV† = (UΠ−1)(ΠΣΠ−1)(ΠV†). (3)

Conventionally, the ambiguity is resolved through ordering the singular values from largest to
smallest. In Sec. 4.3 we show that randomizing the singular values increases the error tolerance
of GridNet. FFTNet is trained directly and its singular values are naturally unordered. For a fair
comparison, we randomly permute the singular values of GridNet.

After 10 training epochs with standard stochastic gradient descent [38], classification accuracies
of 97.8% (GridNet) and 94.8% (FFTNet) were achieved. Better accuracies can be achieved
through convolutional layers [39], Dropout regularization [40], better training methods, etc.
However, we omitted these in order to focus purely on the effects of architecture.
The networks were trained assuming ideal components represented with double-precision

floating point values. Under realistic conditions, due to imprecision in fabrication, calibration, etc.,
the realizable accuracy could be much lower. During inference, we modeled these imprecisions
by adding independent zero-mean Gaussian noise of standard deviation σPS and σBS to the
phases (θ, φ) of the phaseshifters and the transmittance T of the beamsplitters, respectively.
Reasonable values for such imprecisions can be taken to be approximately σPS ≈ 0.01rad and
σBS ≈ 1% = 0.01 [41, 42]. Note that the dynamical variation due to laser phase noise can be
modeled by σPS as well. However, we show in App. B that typical values would be well below
0.01 rad.

4. Results

4.1. Degradation of network accuracy
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Fig. 3. Visualizing the degradation of ONN outputs, FFTNet is seen to be much more
robust than GridNet. Identical input is fed through GridNet (a, b) and FFTNet (c, d),
simulated with ideal components (a, c) and imprecise components (b, d) with σBS = 0.01
and σPS = 0.01rad. Imprecise networks are simulated 100 times and their mean output is
represented by bar plots. Error bars represent the 20th to 80th percentile range.

To investigate the degradation of the networks due to imprecisions, we started by simulating
100 instances of imprecise networks with σBS = 1% and σPS = 0.01rad. Identical inputs of a
digit “4” (Fig. 3(a) inset) are fed through each network. The mean and spread of the output of
the ensemble is plotted and compared against the output from the ideal network (Fig. 3).
The degradation of classification output is significant for GridNet. Without imprecisions in

the photonic components, the digit is correctly classified with near 100% confidence (Fig. 3(a)).
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When imprecisions are simulated, we see a large decrease in classification confidence (Fig. 3(b)).
In particular, the image is often misclassified when the prediction probability for class “9” is
greater than that for class “4”. Repeating these experiments on FFTNet demonstrated that they
were much more resistant to imprecisions (Fig. 3(c), 3(d)). In Appendix D, we show confusion
matrices of both networks with increasing error to further support this conclusion.
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Fig. 4. The decrease in classification accuracy is visualized for GridNet and FFTNet. (a,b)
The two networks were tested with simulated noise of various levels for 20 runs. The mean
accuracy is plotted as a function of σPS and σBS . Note the difference in color map ranges
between the two plots. (c) The accuracies of GridNet and FFTNet are compared along the
σPS = σBS cutline.

Evaluating the two networks on overall classification accuracy confirms the superior robustness
to imprecisions of FFTNet. GridNet and FFTNet were tested at levels of imprecisions with of
imprecisions with σPS/rad and σBS ranging from 0 to 0.02 with a step size of 0.001. At each
level of imprecision, 20, instances of each network were created and tested. The mean accuracies
are plotted in Fig. 4(a), 4(b). A direct comparison between the two networks along the diagonal
(i.e., σPS = σBS cut line, taking 1% = 0.01 rad) is shown in Fig. 4(c).

Starting at roughly 98% with ideal components, the accuracy of GridNet rapidly drops with
increasing σPS and σBS . By comparison, very little change in accuracy is seen for FFTNet
despite starting with a lower ideal accuracy. Also of note are the qualitatively different levels
of sensitivity of the different components to imprecision. In particular, FFTNet is much more
resistant to phaseshifter error compared to beamsplitter error.
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The experiments described in this section confirm the significant effect component imprecisions
have on the overall performance of ONNs, as well as the importance of architecture in determining
the network’s robustness of the network to these imprecisions. Despite having a better classification
accuracy in the absence of imprecisions, GridNet is surpassed by FFTNet when a small amount
of error (σPS = 0.01, σBS = 1%rad) is present. In Appendix E, we demonstrate that FFTNet is
also more robust to quantization error that GridNet.

4.2. Stacked FFTUnitary and truncated GridUnitary

FFTUnitary

StackedFFT

((a)) StackedFFT and FFTUnitary

TruncGrid

GridUnitary

((b)) TruncGrid and GridUnitary

Fig. 5. The architecture of a) StackedFFT and b) TruncGrid shown with FFTUnitary and
GridUnitary from which they were derived. For clarity, the dimension, here, is N = 24 = 16
so FFTUnitary was stacked four times and GridUnitary was truncated at the fourth layer. In
the experiments described in this section, the dimension was taken to be N = 28 = 256.

One obvious reason why FFTNet would be more robust than GridNet is its much lower number
of MZI layers. Their respective, constituent unitary multipliers, FFTUnitary and GridUnitary
contains log2(N) and N layers respectively. For N = 28 = 256, GridUnitary is 32 times deeper
than FFTUnitary which contains only 8 layers.
To demonstrate that FFTUnitary is more robust due architectural reasons beyond its shallow

depth, in this section, we introduce two unitary multipliers – StackedFFT (Fig. 5(a)) and
TruncGrid (Fig. 5(b)). StackedFFT consists of FFTUnitary multipliers stacked end-to-end 32
times and TruncGrid is the GridUnitary truncated after 8 layers of MZIs. This way, FFTUnitary
and TruncGrid have the same depth as do GridUnitary and StackedFFT.

Unitary multipliers by themselves are not ONNs and cannot be trained for classification tasks.
Instead, after introducing imprecisions to the each multiplier, we evaluated the fidelity F(U0,U)
between the original, error-free transfer matrix U0 and the imprecise transfer matrix U. The
fidelity, a measure of “closeness” between two unitary matrices, is defined as [43]

F(U0,U) =
����Tr(U†U0)

N

����2 . (4)

Ranging from 0 to 1, F(U0,U) = 1 only when U = U0. Using this metric of fidelity, we show
that StackedFFT is more robust to error than GridUnitary (Fig. 6(a)) and TruncGrid more than
FFTUnitary (Fig. 6(b)). Both comparisons are between multipliers with the same number of
MZI layers. Yet, the FFT-like architectures are still more robust to their grid-like counterparts.
One possible explanation could be the better mixing facilitated by FFTUnitary. GridUnitary

and thus TruncGrid, at each MZI layer, only mixes neighboring waveguides. After P layers, each
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Fig. 6. With the same layer depth, multipliers with FFT-like architectures are shown to be
more robust. The fidelity between the error-free and imprecise transfer matrices is plotted as
a function of increasing error. Two sets of comparisons between unitary multipliers of the
same depth are made. a) Both StackedFFT and GridUnitary have N = 256 layers of MZIs.
b) TruncGrid and FFTNet have log N = 8 layers.

waveguide is connected to, at most, to its 2P nearest neighbors. In comparison, after P layers,
FFTUnitary connects N = 2P .

Here, we have compared the robustness of different unitary multipliers in isolation. We stress
that the overall robustness of neural networks is a much more complex and involved problem. A
rough understanding can be formulated as follows. A trained neural network defines a decision
boundary throughout the input space. Introduction of errors perturbs the decision boundary
which can lead to misclassification. To reduce this effect, we can make the decision boundary
of ONNs more robust to errors. However, it is also important to consider the robustness of
misclassification due to perturbations of decision boundaries. Indeed, it has been shown that
robustness of neural networks are dependent on the geometry of the boundary [44].

A complete analysis of the robustness of neural networks to various forms of perturbations is
outside the scope of this paper. Nonetheless, it is important to understand the dependence of
ONNs on both architectural and algorithmic design.

4.3. Localized imprecisions

To better understand the degradation of network accuracy, we mapped out the sensitivity of
GridNet to specific groups of MZIs. A relatively large amount of imprecision (σPS = 0.1rad)
was introduced to 8 × 8 blocks of MZIs in layer 2 (Fig. 2) of an otherwise error-free GridNet.
The resulting change in classification accuracy is plotted as a function of the position of the MZI
block (Fig. 7). We see no strong correlation between the change in accuracy and the spatial
location of the introduced error. In fact, error in many locations led to small increases in accuracy,
suggesting that much of the effect is due to chance.

This result seems to contradict previous studies on the spatial tolerance ofMZIs in a GridUnitary
multiplier [14–16]. It was discovered that the central MZIs of the multiplier had a much lower
tolerance than those near the edges. When learning randomly sampled unitary matrices, the
central MZIs needed to have phase shift values very close to 0 (π, following the convention used
in this paper). This would only be achievable with MZIs with extremely high extinction ratios
and thus low fabrication error.
Empirically, this distribution of phases was observed in GridUnitary multipliers of trained

ONNs (See app. F). However, the idea of tolerance of a MZI to beamsplitter fabrication
imprecision, while related, is not the same as the network sensitivity to localized imprecisions.
To elaborate, tolerance is implicitly defined, in references [14–16], as roughly the allowable
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Fig. 7. Change in accuracy due to localized imprecision in layer 2 of GridNet with randomized
singular values. A large amount of imprecision (σPS = 0.1rad) is introduced to 8× 8 blocks
of MZIs in an otherwise error-free GridNet. The resulting change in accuracy of the network
is plotted as a function of the position of the MZI block in GridUnitary multipliers V†2 and
U2 (coordinates defined as in Fig. 1(a)). The transmissivity of each waveguide through the
diagonal layer Σ2 is also plotted (center panel).

beamsplitter imperfection (deviation from 50:50) that still permits post-fabrication optimization
of phaseshifter towards arbitrary unitary matrices. In our pre-fabrication optimization approach,
we take sensitivity to be the deviation from ideal classification accuracy when imprecision is
introduced to the MZI with no further reconfiguration. See App. G for this difference further
illustrated by experiments with another architecture.

Fig. 8. Effects of localized imprecision in layer 2 of GridNet with ordered singular values.
Similar to Fig. 7, except GridNet has its singular values ordered. Therefore, the transmissivity
is also ordered (center panel).

Recall that the singular values Σ of the GridNet’s linear layers could be permuted together
with columns and rows of U and V† respectively without changing the final transfer matrix (Eq.
(3)). The singular values were randomized to provide a fair comparison with FFTNet. We then
performed the same experiment on GridNet where the singular values of each layer were not
randomized but ordered from largest to smallest. Therefore, the transmissivity T = | sin(θ/2)|2 of
the diagonal multiplier Σ is also ordered (Fig. 8). In this case, there is a significant, visible pattern
because most of the signal travels through the top few waveguides of Σ2 due to the ordering of
transmissivities. Only MZIs connected to those waveguides have a strong effect on the network.
In fact, the network is especially sensitive to imprecisions in MZIs closest to this bottleneck (Fig.
8, top-right of V†2 and top-left of U2). It is important to note that this bottleneck only exist due
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to the locality of connections in GridNet where only neighboring waveguides are connected by
MZIs. In FFTNet, due to crossing waveguides, no such locality exist.
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Fig. 9. The degradation of accuracies with increasing σPS = σBS compared between two
GridNets one with ordered and another with randomized (but fixed) singular values.

In addition to, and likely due to the spatial non-uniformity in error sensitivity, GridNet with
ordered singular values is more susceptible to uniform imprecisions (Fig. 9). The same GridNet
architecture, could be made more resistant by shuffling its singular values. This difference
between two identical architectures implementing identical linear and non-linear transformations
demonstrates that the resistance to error in ONNs is effected by more than architecture.

5. Conclusion

Having argued that pre-fabrication, software optimization of ONNs is much more scalable
than post-fabrication, on-chip optimization, we compared two types of networks–GridNet and
FFTNet in their robustness to error. These two networks were selected to showcase the trade-off
between expressivity and robustness. We demonstrated in Sec. 4.1 that the output of GridNet is
much more sensitive to errors than FFTNet. We have illustrated the robustness of FFTNet by a
providing a thorough evaluation of both networks operating with imprecisions ranging between
0 ≤ σBS, σPS ≤ 0.02. With ideal accuracies of 97.8% and 94.8% for GridNet and FFTNet
respectively, GridNet accuracy dropped rapidly to below 50% while FFTNet maintained near
constant performance. Under conservative assumptions of errors associated with the beamsplitter
(σBS > 1%) and phaseshifter (σPS > 0.01 rad), a more robust network (FFTNet) can be favorable
over one with greater expressivity (GridNet).
We then demonstrate, in Sec. 4.2, through modified unitary multipliers, TruncGrid and

StackedFFT, that controlling for MZI layer depth, FFT-like designs are inherently more robust
than grid-like ones.

To gain a better understanding of GridNet’s sensitivity to imprecision, in Sec. 4.3, we probed
the response of the network to localized imprecisions by introducing error to small groups of
MZIs at various locations. The sensitivity to imprecisions was found to be less affected by the
MZIs’ physical position within the grid and more so by the flow of the optical signal. We then
demonstrated that beyond architectural designs, small procedural changes to the configuration of
an ONN, such as shuffling the singular values, can change affect the its robustness.
Our results, presented in this paper, provide clear guidelines for the architectural design

of efficient, fault-resistant ONNs. In looking forward, it would be important to investigate
algorithmic and training strategies as well. A central problem in deep learning is to design neural
networks complex enough to model the data while being regularized to prevent over-fitting of
noise in the training set [8]. To this end, a wide variety of regularization techniques such as
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Dropout [40], Dropconnect [45], data augmentation, etc. have been developed. This problem
parallels the trade-off between an ONN’s expressivity and its robustness to imprecisions presented
here. Indeed, an important conclusion in Sec. 4.3 is that in addition to architecture, even minor
changes in the configuration of ONNs also have a great effect on the network’s robustness to
faulty components.
The robustness of neural networks to perturbations [44] is a well studied and open problem

that is outside of the scope of this article on architectural design. Nevertheless, a complete
analysis of ONNs with imprecise components requires an understanding of robustness due to
architectural design as well as due to software training, possibly under a unifying framework. A
natural direction for further exploration is to consider analogies to regularization in the context
of imprecise photonic components and to focus on the development of algorithms and training
strategies for error-resistant optical neural networks.

Appendix

A. MZI transfer matrix

Because MZIs are comprised of beampslitters and phaseshifters, we state their respective transfer
matrix first.

UBS(r) =
©­«

r it

it r

ª®¬ (5)

where t ≡
√

1 − r2 and

UPS(θ) =
©­«
eiθ 0

0 1
ª®¬ . (6)

With the construction of PS-BS-PS-BS (Fig. 1(a), inset), the MZI transfer matrix is the following
matrix product:

UMZI (θ, φ; r, r ′) = UBS(r)UPS(θ)UBS(r ′)UPS(φ) (7)

=
©­«

r it

it r

ª®¬ ©­«
eiθ 0

0 1
ª®¬ ©­«

r ′ it ′

it ′ r ′
ª®¬ ©­«

eiφ 0

0 1
ª®¬ (8)

=
©­«

eiφ
(
eiθrr ′ − tt ′

)
i
(
tρ + eiθrt ′

)
ieiφ

(
eiθ tr ′ + rt ′

)
rρ − eiθ tt ′

ª®¬ (9)

Assuming that the beamsplitter ratios are 50:50, we can take r = t = 1/
√

2 so that

UBS ≡ UBS (π/2) =
1
√

2
©­«
1 i

i 1
ª®¬ (10)

and therefore,

UMZI (θ, φ) = ieiθ/2 ©­«
eiφ sin θ

2 cos θ2
eiφ cos θ2 − sin θ

2

ª®¬ (11)
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In our convention, the transmission and reflection coefficient is

T = | cos θ/2|2 and R = | sin θ/2|2 (12)

respectively. In particular, the MZI is in the bar state (T = 0) when θ = π and in the cross state
(T = 1) when θ = 0.

However, in other conventions, the beamsplitter is often taken to be the Hardamard gate.

H =
1
√

2
©­«
1 1

1 −1
ª®¬ . (13)

We note however, that

UBS =
©­«
1 0

0 i

ª®¬ H ©­«
1 0

0 i

ª®¬ = UPS(−π/2)HUPS(−π/2) (14)

up to a global phase. We then can express the MZI transfer matrix as

UMZ (θ, φ) = UPS(−π/2)HUPS(θ − π)HUPS(φ − π/2). (15)

Note in this convention the internal phase shift is now θ + π and thus the bar and cross states are
now at θ = 0 and θ = π respectively.

B. Laser phase noise

The variance in phase for typical lasers can be modeled as [46]

σφ(τ)
2 = 2π · δ f · τ. (16)

Here, τ is the time of integration and δ f the linewidth of the laser. For an order or magnitude
calculation, we ignore the refractive index and take τ = L/c where L is the distance between
two subsequent phaseshifters on an MZI. Again, as an order of magnitude estimate, we take
L = 100µm = 10−4m and thus τ ≈ 3 × 10−13. We wish to solve for the linewidth required for
σφ = 0.01rad:

σ2
φ = 10−4 = 2π · δ f · τ (17)

≈ 6 · 3 × 10−13sδ f (18)
δ f ≈ 5 × 107Hz (19)
= 50MHz. (20)

A linewidth of 50 MHz is easily achieved by modern lasers. For example, Bragg reflector lasers
have been shown to achieve a linewidth of 300 kHz [47]. Thus, the contribution to phase noise
from the laser is roughly two orders of magnitude smaller than that from MZIs.

C. Approximating saturable absorption

Saturable absorption can be modeled by the relation [48]

u0 =
1
2

log(T/T0)

1 − T
(21)
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Fig. 10. The saturable absorption response curve compared to the corresponding Softplus
approximation with various values of T .

where T = u/u0 and u = στs I and u0 = στs I0. I0, I are the incidental and transmitted intensities,
respectively. The above equation can be solved to be

u =
1
2

W(2T0u0e2u0 ) ≡ f (u0) (22)

Where W is the product log function or Lambert W function. However, since W is not readily
available in most deep learning libraries and difficult to implement, we wish to approximate the
above by the shifted and biased Softplus non-linearity of the form

σ(u) = β−1 log
(
1 + eβ(u−u0)

1 + e−βu0

)
. (23)

The bias of −β−1 log(1 + e−βu0 ) was chosen to ensure that σ(0) = f (0) = 0. We now choose
β and u0 to ensure that

1. σ′(0) = f ′(0) = T0,

2. limu→∞ σ(u) − u = limu→∞ f (u) − u = 1
2 logT0.

The derivative of σ(u) is easily found to be

σ′(0) =
e−βu0

1 + e−βu0
(24)

= (1 + eβu0 )−1. (25)

Requiring that it equals to f ′(0) = T0 allows us to solve for

u0 = β
−1 log

(
T−1

0 − 1
)
. (26)
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Next, in the large u limit, the biased Softplus converges to

σ(u) → (u − u0) − β
−1 log(1 + e−βu0 ). (27)

Solving for equality with f (u) → u + 1
2 logT0 gives

u0 + β
−1 log(1 + e−βu0 ) = −

1
2

logT0 (28)

βu0 + log

(
1 +

1
T−1

0 − 1

)
= −

1
2
β logT0 (29)

log(T0) = −
1
2
β logT0 (30)

β = 2. (31)

Going back to Eq. (26), we obtain

u0 =
1
2

log(T−1
0 − 1). (32)

Fig. 10 plots the saturable absorption response curve compared to the Softplus approximation
derived above.

D. Confusion matrices

((a)) Ideal GridNet ((b)) GridNet : σ = 0.01 ((c)) GridNet : σ = 0.02

((d)) Ideal FFTNet ((e)) FFTNet : σ = 0.01 ((f)) FFTNet : σ = 0.02

Fig. 11. The degradation of ONN outputs visualized through confusion matrices. Each
confusion matrix shows how often each target class (row) is predicted as each of the ten
possible classs (column). Both networks, GridNet (a, b, c) and FFTNet (d, e, f) are evaluated.
First in the ideal case (a, d) then, with increasing errors (b, e and c ,f). Note the logarithmic
scaling.

To investigate the degradation of the networks due to imprecisions, we produce confusion
matrices for both networks in the ideal case, with no imprecisions, and with different levels of
error. σBS = 1%, σPS = 0.01rad and σBS = 2%, σPS = 0.02rad (Fig. 11).
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Fig. 12. The effects of quantization is shown for both GridNet and FFTNet. 10 instances of
GridNet (blue) and FFTNet (red) were trained then quantized to varying levels. The mean
classification accuracy at each level is shown by bar plots. The 20-80% quantiles are shown
with error bars. The dotted horizontal line denotes the full precision accuracy.

The imprecisions were simulated 10 times and the mean of the output was used in generating
the confusion matrices.

E. Quantization error

In this section, we explore the quantization error introduced by thermo-optic phaseshifters.
Assuming a linear relationship between refractive index and temperature and quadratic relationship
between temperature and voltage, we have

θ ∝ V2

θ = 2π
(

V
V2π

)2

≡ 2πu2√
θ

2π
= u.

We have taken V2π to be the voltage required for a 2π phaseshift and defined the dimensionless
voltage u = V/V2π . Assuming that the voltage can be set with B-bit precisions, u must take on
values of

u ∈ {2−Bi : i = 0, . . . , 2B − 1}.

The quantization procedure then takes

θ → θ̃ ∈

{
2π
22B i2 : i = 0, . . . , 2B − 1

}
.
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To evaluate the sensitivity to quantization, we quantized GridNet and FFTNet with varying
levels of precision. Since quantization is deterministic, we trained 10 instances of both networks
with randomized initialization and thus different configuration but similar ideal accuracies (∼ 95%
and ∼ 98%). The networks were then quantized at varying levels – from 4 to 10 bits. Their
classification accuracy at each level is shown in Fig. 12.
Similar to results with simulated Gaussian noise, FFTNet is more robust than GridNet. Note

that in this case, the quantization was applied after training has finished. Neural networks in
which quantization happens as part of the training procedure has been demonstrated to have
accuracies very near their full precision counterpart, down to even binary weights [49, 50].

F. Empirical distribution of phases

((a)) ((b))

Fig. 13. The central MZIs of GridNet has lower variance in internal phase shifts (θ). a)
The spatial distribution of internal phase shift (θd,l) of MZIs in U2 of GridNet. Reference
Fig. 1(a) for coordinates and Fig. 2 for location of U2 in context of network architecture.
b) Histogram of phase shifts near the center (red), edge (green), and corner (blue) of
the GridUnitary multiplier. These phases are obtained from multiple instances of trained
GridNets with random initialization.

((a)) ((b))

Fig. 14. The variance of internal phase shifts of FFTNet is uniform spatially (a) Spatial
distribution of phase shifts for a FFTUnitary multiplier. The MZIs are ordered as shown in
Fig. 1(b). (b) Histogram of phase shifts of FFTUnitary near the center (red) and top (green).
These phases are obtained from mulitple trained FFTNets with random initialization.

Analyses has been done on the distribution of the internal phase shift (θ) ofMZIs of GridUnitary
multipliers when used to implement randomly sampled unitary matrices [14–16]. It was shown
that the phases are not uniformly distributed spatially. To be more concrete, We denote d the
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waveguide number and l the layer number (see Fig. 1(a)). The distribution of the MZI reflectivity
(r = sin(θ/2)) is [15]

rd,l ∼ Beta(1, βd,l). (33)

For large dimensions N ,

β ≈ N − 2 max(|d − N/2|, |l − N/2|) (34)
= N − 2| |(d, l) − (N/2, N/2)| |∞. (35)

β decreases from N at the center of the grid layout to 0 at the edge of the grid. For large β (i.e.
near the center), the mean and variance of rd,l are approximately

µr ≈ β
−1;σ2

r ≈ β
−2.

Consequently, the reflectivity, and therefore the internal phases, of MZIs near the center of Gird
Unitary multipliers are distributed very close to 0, with low variance. This effect is magnified
with larger dimensions N .

This result was derived with the assumption of Haar-random unitary matrices. Such a
distribution is not guaranteed and not expected for layers of trained neural networks. (Fig. 13(a))
shows the spatial distribution of phases in the GridUnitary multiplier U2 (see Fig. 2). While
the empirical histogram (Fig. 13(b)) does not match the theoretical distribution (Eq. (33)), the
general trend of lower variance near the center of GridUnitary multipliers is evident. This is
claimed to translates to a lower tolerance for error [14].
A similar analysis was conducted for FFTNet. Immediately we notice that the distribution

of phase shifts is mostly uniform across the MZIs (Fig. 14(a)). This can be attributed to the
non-local connectivity of FFTUnitary multipliers. Histograms constructed from an ensemble of
100 trained FFTNets with random initial weights (Fig. 14(b)) confirms this observation. The
histogram for the region near the center (red) is nearly identical to the top (green).

We reiterate the distinction, made in Section 4.3, between pre-fabrication error tolerance and
the sensitivity of error introduced post-fabrication. Pertinent to the first concept is how well the
network can be optimized after a known set of imperfections are introduced to the network. The
latter concept, which is relevant for our discussion, describes the sensitivity of the network with
no further reconfiguration to unknown errors. In contrast to pre-fabrication error tolerance, our
analysis in 4.3 does not show significant spatial dependence for post-fabrication error sensitivity.

G. BlockFFTNet

We introduce a network with similar depth as GridUnitary but with non-local, crossing waveguides
in between as those seen in FFTUnitary (Fig. 15(a)). This is similar to the coarse-grained
rectangular design mesh in [14] which was motivated to produce a spatially uniform distribution of
phase and thus better tolerance for post-fabrication optimization. We also empirically observe that
when incorporated as part of a ONN (BlockFFTNet), the distribution of phases are also uniformly
distributed (Fig. 15(b)). We directly demonstrate that better tolerance for post-fabrication
optimization does not directly to better error-resistance for a network optimized pre-fabrication.
The accuracy loss due to increasing imprecision is shown in Fig. 16.

H. FFT algorithm and convolution

We show that the actual Cooley-Tukey FFT algorithm can be implemented with appropriate
configurations of the phases of FFTUnitary multiplier.
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((a)) ((b))

Fig. 15. a) A schematic of BlockFFTUnitary. Blocks of MZIs in dashed, blue boxes are
similar to GridNet. The crossing waveguide, similar to those in FFTNet are between the
blocks. b) The distribution of phases after being trained. The dashed white lines denote the
locations of the crossing waveguides.

Fig. 16. No improvement in robustness to imprecision is seen with BlockFFTNet over
GridNet. In fact, there is a significant decrease.

If we denote the input as xn ∈ CN , its Fourier transform is

Xk =
1
√

N

N−1∑
m=0

xne−
2π i
N nk . (36)
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The FFT algorithm, in short, is to rewrite the above as

Xk =
1
√

2

(
Ek + e−

2π i
N kOk

)
(37)

Xk+N/2 =
1
√

2

(
Ek − e−

2π i
N kOk

)
. (38)

Here, we have defined Ok and Ek to be the Fourier transform on the odd and even elements of
xn respectively. The calculation of Ek and Ok are done recursively. For N = 2K , a total of K
iterations are needed. It is well known that if xn is in bit-reversed order, the calculations can be
done in place.
Furthermore, in matrix form,

©­«
Xk

Xk+N/2

ª®¬ = 1
√

2
©­«
1 e−

2π i
N k

1 −e−
2π i
N k

ª®¬ ©­«
Ek

Ok

ª®¬ ≡ Uk
©­«

Ek

Ok

ª®¬ .
From Eq. (1), we note that Uk = UMZ (θ = π/2, φ = 2πk/N), up to some global phase.

Therefore, if xn is in bit-reversed order, and passed through a FFTUnitary multiplier where the
kth layer is configured with θ = π/2, φ = 2πk/N , FFT can be performed.
Going further, a convolution can be easily performed through multiplication of the Fourier

transformed signal by the Fourier transformed convolutional kernel, followed by a inverse Fourier
transform.
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