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Abstract 

We simulate automotion, the spontaneous transport of a magnetic domain wall under the 

influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In 

contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate 

with only a transient current pulse and provide favorable scaling down to the 20nm scale. Cases 

of both in-plane and perpendicular magnetization are considered. Analytical dependence of the 

velocity of domain walls on the angle of magnetization are compared with full micromagnetic 

simulations. Deceleration, disappearance, and reflection of domain walls are demonstrated. 

Dependences of the magnetization angle on the current pulse parameters are studied. The energy 

and delay analysis suggests that automotion is an attractive option for spintronic logic 

interconnects.  



The development and Moore’s law [
1
] scaling of complementary metal-oxide-semiconductor 

(CMOS) field effect transistor (FET) electronics over the last four decades was tremendously 

successful. In recent years, active research has been underway to find viable devices which will 

supplement CMOS. Currently, many beyond CMOS options are considered [
2
,
3
] and many of 

them are spintronic devices [
4
], i.e., ones based on spin or magnetic moment as a computational 

variable. Among them, some are based on motion of domain walls (DW) [
5
,
6
,
7
,
8
] in 

ferromagnetic (FM) wires. In general a logic technology comprises of switches and memory 

elements, interconnected by a complex network of interconnects. Interconnects play a major role 

in the total power and performance of a computing device. Hence, it is of great interest to 

identify interconnect technologies for spin based computing. Domain wall spin interconnects 

avoid spin to electrical conversion and are one of the natural choices for spin based computer. 

Though DW can be moved over significant distances by a magnetic field [
9
], driving them with 

current proved more efficient and convenient [
10

]. It was treated theoretically [
11

,
12

] and observed 

[
13

]. The current in plane (CIP) flows, along the FM wire, and the spin transfer torque caused by 

electron spins’ flipping moves the DW. An alternative way of motion with the current 

perpendicular to plane (CPP) of the FM wire was proposed [
14

]. It has the obvious disadvantage 

– the current needs to be applied over the whole length of the FM wire. Most recently, DW 

motion by the torque of the spin Hall effect was proposed [
15

]. In that case, the CIP flows in 

parallel to the FM wire, though the spin torque is applied perpendicularly to it. Traditionally, 

walls separating domains with magnetization in plane of the chip are considered. Later 

perpendicular magnetization materials became available, and it was found that DW in them can 

be moved by a smaller current [
16

]. However, the existing domain wall based logic and 

interconnects assume a constant driving current for motion of the domain wall. Combined with 



the limited efficiency of spin torque and the resistivity of magnetic interconnects, existing DW 

devices suffer from large energy-delay product [3]. 

In all options above, a driving force – a magnetic field or a current – was needed for the motion 

of DW. Only a few works deal with automotion of DW [
17

], i.e., motion of the wall due to its 

shape, under the influence of the demagnetization and anisotropy of the FM. Of course, a driving 

force is needed to create the required initial magnetization distribution in a DW. However, the 

DW travels a significant distance even after the force is turned off. In [17], the vortex-type DW 

are formed by CIP. In spite of the attractive energy arguments, automotion gets relatively little 

attention, even though this regime can be derived from analytical expressions [11] for current-

driven motion. The exact dynamics of spontaneous motion of DW also remains to be established. 

The exact nature of spontaneous motion of DW is described contradictorily. Some works state 

that “In the absence of the external field, the DW moves back to its original location after the 

current is turned off” [
18

]. Conversely other works do predict transient displacement of DW after 

finite pulses of current [
19

]. 

In this letter, we propose the use of automotion of domain walls for local spintronic interconnects. 

We provide analytical treatment and numerical simulations of automotion of DW to prove their 

suitability for that purpose. We consider the process of their formation by the spin torque from a 

CPP pulse and determine the DW’s angle and velocity. We show how DW decelerate due to 

damping and how they can disappear off the edge of a FM wire reflect from it. Finally we 

estimate the delay and the required energy of an interconnect.  



We start by deriving the dynamics of spontaneous motion of DW after a transient spin torque 

pulse creates it. The dynamics of magnetization in the DW motion is described using the 

Landau-Lifshitz-Gilbert (LLG) equation [
20

,
21

] 

  STTeffBm
dt

dm
m

dt

dm









  ,       (1) 

In which the CPP spin torque term is  

    pmmapmb JJSTT   .       (2) 

The unit vector of magnetization is m  and its magnitude is sM , the unit vector of injected spin 

polarization is p , the Gilbert damping coefficient is  , the Lande g-factor is g , the 

gyromagnetic coefficient is 
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The Slonczewski torque and filed-like torque terms are Ja  and JJ ab 1.0~ ,  
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the layer thickness is d . The effective magnetic field is proportional to the gradient of the total 

energy of the magnet relative to magnetization 
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The energy per unit volume has the terms for the Zeeman energy in the external field H , the 

exchange energy  with a constant A , and the combined demagnetization and material anisotropy 

terms: 
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Where the energy associated with each axis consists of its demagnetization (aka shape 

anisotropy) with the constants ),,( zyx NNN and material anisotropy with constants 

),,( ,,, zmymxm KKK . The sum of these two parts of energy is overall anisotropy.  

We do a numerical solution of the above model using the NIST’s OOMMF simulator [
22

]. We 

consider a FM wire of length nml 600  along x-axis, width nmw 20  along y-axis, and 

thickness nmd 2 along z-axis. Typical local interconnect length needs to be [3]

nmwL 40020int  . 

We start with DW in a FM wire with perpendicular magnetization. In an analytical solution for a 

DW, we neglect the magnetization variations across the wire, and only consider variations in 

time and along the wire, x-axis, ),( txm . For convenience we represent magnetization by its 

spherical angles: the polar angle  relative to z-axis and the azimuthal angle   in the xy-plane. 

We arrive at simplified equations similar to those in [18,14] but no driving force, i.e., external 

field or spin torque 
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Then we substitute a Walker trial function [9] describing a decelerating Neel DW  
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which cancels the right hand side of (8) provided that effKA / . DW with an opposite 

direction of magnetizations correspond to an opposite sign of the inner bracket in (9). For perpendicular 

magnetization , the effective anisotropy is  

zyxperpeff KKKK   22

, sincos .       (10) 

We assume that the DW angle )(t , width )(t , and velocity )(tu  can be functions of time 

but not of coordinates in the frame tied to the DW. The set of equations turns to  
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where the maximal velocity of DW is  
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Initial velocity of DW is determined by its angle as per (11). The case of in-plane magnetization 

is treated similarly with the polar angle measured from the x-axis and with the modified 

expression for the effective anisotropy: 
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The maximum velocity of in-plane DW is  
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The qualitative behavior described by equations (11) is as follows. The initial azimuthal angle of 

the DW determines its velocity (both the magnitude and the direction). As noted above, the 

velocity has the opposite sign for the opposite magnetizations in a DW, as is the case in 

simulated examples below. Then the azimuthal angle approaches zero (or  ) and the velocity 

decreases accordingly. Finally a DW stops. This evolution is similar to the Walker breakdown 

[9]. We show that nanoscale DW automotion interconnects are amenable for a multi-scale 

interconnect topology (i.e., range of the signal in the interconnect increase with increasing width) 

required for a micro-chip. We estimate the decay length and decay time of the domain wall 

automation. An estimate of the time of a DW slowdown based on approximating terms in Eq. 

(11) is 
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and the distance traveled 

2
~


decx .           (16) 

From this, in order to increase the distance of automotion, one needs to increase the DW width 

(along with the obvious way of decreasing damping). This behavior is illustrated by simulations 



in Figs. 1 and 2. In all simulations in this letter, a CPP torque is applied to an area of 20x20nm 

on the left if the FM wire for a certain duration and then switched off. In the patterns of 

magnetization, the projections of magnetization in-plane are shown by arrows, and the out-of-

plane projection corresponds to color: red = positive, and blue = negative. For these simulations 

we choose the exchange constant mJA /102 11 , polarization 9.0P , field like torque 

JJ ab 3.0 , and Gilbert damping 01.0 , unless stated otherwise. For in-plane 

magnetization (Fig. 1) we take typical material parameters: mMAM s /1 , 0, zmK . This 

results in DW parameters: nminp 8 , smu inp /671max,  , nmxdec 400 , nstdec 6.0 . 

For the perpendicular magnetization (Fig. 2) we take mMAM s /4.0 , 

35

, /102.1 mJK zm  . This results in DW parameters: nmperp 23 , smu perp /118max,  , 

nmxdec 1144 , nstdec 7.9 . The domain walls with in-plane magnetization have a higher 

velocity mainly due to a larger difference of energies between axes in (14) and also due to a 

larger magnetization value we used. We see that as the current is applied, a DW is formed and its 

angle changes. Then a DW angle decreases and it stops. The simulations agree well with the 

above estimates. 

The cases when a DW makes it to the other end of a FM wire are shown in Figs. 3 and 4. The in-

plane DW disappears off the end (Fig. 3, between snapshots #6 and #7). After that oscillating 

and decaying spin waves are radiated along the FM wire. This is seen from a sequence of 

magnetization arrows deflected in opposite y-axis directions and red and blue regions 

corresponding to opposite z-axis projections. The perpendicular DW is reflected off the edge and 

continues propagating back along the FM wire. This difference of behavior is explained by a 



different character of the demagnetization field generated by magnetic poles at the end of the 

wire. In the in-plane case, the poles are determined by the magnetization on one side of the DW 

and exist from the beginning. Their demagnetization field rotates magnetization in the DW so as 

to promote its continued motion off the edge. In the perpendicular case, the poles are formed by 

the x-projection of magnetization in the approaching DW. Their demagnetization field rotates 

magnetization in the DW so as to oppose its motion. Therefore the DW angle changes to 

opposite and a DW continues motion in the opposite direction. For a spintronic interconnect, 

reflection of DW is an undesirable feature, since one requires switched magnetization at the end. 

Next we study the dependence of DW motion on the spin torque parameters. For that we record 

the average magnetization in the FM wire and calculate the DW position and angle via the ratio 

of magnetization projections. For in-plane magnetization (Fig. 5) we see a gradual change of the 

angle as a function of current, except for a few points when the angle jumps by . That happens 

at a boundary of the range where a DW with a negative velocity is formed and immediately 

disappears of the left edge (designated as zero velocity and zero angle here). One can see several 

periods of the angle change over the simulated range of current in Fig. 5. The relation (11) 

between the angle and the velocity is confirmed by simulation with an accuracy of ~10%. The 

reasons for discrepancy are the approximations of the analytical solution, the discretization errors 

of the numerical solution, and slight oscillations of the DW angle found in the simulation. The 

dependence of the DW velocity and angle on the pulse duration (Figs. 6 and 8) is much more flat. 

At a short pulse duration, spin torque is not sufficient to flip magnetization and thus to create a 

DW. At long pulse duration, the DW is already travelling away from the area of spin torque, and 

the spin torque does not affect its parameters. 



The dependence of the motion of DW with perpendicular magnetization, shown in Fig. 7, is 

more oscillatory. The DW velocity turns to zero at separate points at which 2sin  turns to zero. 

At ranges of current between such points, a DW may be formed with a negative velocity. In this 

case a DW is immediately reflected off the left edge and starts propagating right with a positive 

velocity. Therefore perpendicular domain walls have more values of current with higher velocity, 

comparable to maxu , and the interconnect operation is less sensitive to current variations. 

Finally we estimate the switching energy necessary to create a domain wall and the delay of 

propagation in the interconnect of 400nm length. From the above simulation the characteristic 

values for in-plane DW are nstic 6.0 , fJEic 10 , and for perpendicular DW are 

nstic 5.3 , fJEic 8.7 . The DW interconnects benefit from a low voltage VVdw 1.0  at 

which spin torque switching can occur. Therefore in-plane the DW interconnect is much faster at 

a price of a modestly higher switching energy. These values of energy are better than those with 

DW persistently driven by spin torque and are competitive with benchmarks of beyond CMOS 

circuits [3]. On a different metric, energy per bit per unit length, DW interconnects score 

~20fJ/bit/µm which is competitive even with CMOS. For the latter we can estimate the switching 

energy as int

22 / LwtVE swdd  , with voltage VVdd 1 , switching time pstsw 3 , resistivity 

           [
23

,
24

] projected for w=20nm wide metallic wires. This will result in 

94fJ/bit/µm for CMOS interconnects. On the downside, the delay of the DW interconnects is 

much longer than that of electronic interconnects, as seen above. 

We considered the automotion of the domain walls with both in-plane and perpendicular 

magnetizations walls which were created by an initial pulse of a current. These domain walls 



decelerate and tend stop, but before that they traverse significant distances.  In-plane domain 

walls disappear off the ends of wires, while perpendicular domain walls reflect from them. The 

initial velocity of domain walls depends on the angle of magnetization in the domain wall. This 

angle has a strongly oscillating dependence on the magnitude of the current causing the rotation 

by the spin torque. This angle is not very sensitive to the duration of the pulse. In summary, such 

domain walls are suitable for interconnects between spin logic gates. Domain walls with in-plane 

magnetization are preferable since they move with a higher velocity than domain walls with 

perpendicular magnetization and require comparable energy to create them. 
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Figure 1. Snapshots of magnetization at intervals of 0.2ns for in-plane DW. Current AI 300 , pulse 

ns5.0 ,  damping 01.0 . 

 

Figure 2. Snapshots of magnetization at intervals of 1ns for perpendicular DW. Current AI 240 , 

pulse ns2 , damping 03.0 . 



 

Figure 3. Snapshots of magnetization at intervals of 0.2ns for in-plane DW. Current AI 400 , pulse 

ns5.0 . 

 

Figure 4. Snapshots of magnetization at intervals of 1ns for perpendicular DW. Current AI 100 , 

pulse ns2 , damping 01.0 . 



 

Figure 5. DW velocity and angle vs. current for in-plane magnetization, pulse ns5.0 . The velocity is 

designated by unconnected stars, and the angle – by a dashed line. 

 

Figure 6. DW velocity and angle vs. pulse duration for in-plane magnetization, current AI 400 . 



 

Figure 7. DW velocity and angle vs. current for perpendicular magnetization, pulse ns1 . 

 

Figure 8. DW velocity and angle vs. pulse duration for perpendicular magnetization, current AI 150 . 



Supplementary Material 

Equations for magnetization dynamics 

The Landau-Lifshitz-Gilbert (LLG) equations for magnetization are 
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Where the spin torque term for in-plane current is 
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And for out of plane current the spin torque term is  

    pmmapmb JJSTTp   . 

The unit vector of magnetization is m , the unit vector of injected spin polarization is p , the Gilbert 

damping coefficient is  , the magnetization is sM , the Lande g-factor is g , the gyromagnetic 

coefficient is     
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The spin torque terms are JJ ab 1.0~ , the layer thickness is d , and  

s

J
deM

PJ
a

2


  

The effective magnetic field is proportional to the gradient of the total energy of the magnet relative to 
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The energy per unit volume has the terms for the Zeeman energy in the external field H , the exchange 

energy  with a constant A , and the combined demagnetization and material anisotropy terms: 
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Where the energy associated with each axis consists of its demagnetization (aka shape anisotropy) with 

the constants ),,( zyx NNN and material anisotropy with constants ),,( ,,, zmymxm KKK . The sum of these 

two parts of energy is overall anisotropy 

xmxsx KNMK ,

2

0
2

1
  , 

and similarly for the other two axes.  

Performing the gradient we obtain that the effective field in vector form 
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Simplification for domain walls in a magnetic wire 

In an analytical solution for a domain wall, we neglect the magnetization variations across the wire, and 

only consider variations in time and along the wire, x-axis, ),( txm . 

For convenience we represent magnetization by its spherical angles:   relative to z-axis and   in the 

xy-plane of the chip. It is especially convenient for wires with equilibrium magnetization out-of-plane 

of the chip (in-plane magnetization is treated similarly): 
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Their projections on spherical coordinates 
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In the spherical coordinates, a differential is  
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The Laplacian is 
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For any vector in ],[  vvv   spherical coordinates, the cross product is  
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The cross-product of unit vectors along axes with the magnetization vector is  
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Using these expressions we can re-cast the terms of the LLG equation from Cartesian to  spherical 

coordinates. 

Then projecting the LLG equations on the local spherical coordinates 
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Domain wall solutions 

If we are aiming to find solutions of the domain walls with constant   and constant velocity of 

propagation, we can substitute the functional shape for static domain walls 























utx
tx exparctan2),(  

It is remarkable for the fact that  
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Here is the width of a domain wall to be determined from the equations. 

Then the equations turn to 
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In the absence of the spin torque or external magnetic fields the equations further simplify to 
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From these equations we can approximately find the width and velocity of the domain walls. Substituting 

the velocity one obtains 
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Let us introduce the effective anisotropy energy which is pertinent to the domain wall width 

zyxperpeff KKKK   22
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which is positive in the case of zxy KKK  typical for perpendicular magnetization. 

Neglecting the term with the factor of Gilbert damping   in front of it, we arrive at the equation 
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Which has the solution 
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with effKA / . This verifies the assumption of the functional shape made above. 

Finally the velocity of domain walls is principally determined by their angle   
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It can be positive or negative depending on the angle. Its magnitude is maximal for the angle of 45, -45, 

135 and -135degrees. 
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The case of in-plane magnetization is treated similarly. The only change is that the spherical angles are 

now measured from the x-axis rather than the z-axis. Then we can re-use the above results with a cyclic 

permutation of the x,y,z-indices. 
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which is positive in the case of xyz KKK  typical for in-plane magnetization. The velocity of 

domain walls is  
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Which may be faster than that for perpendicular polarization. 



Comparison with published results 

Let us compare this with analytical equations from A.V. Khvalkovskiy et al., PRL 102, 067206 (2009) for 

zero external magnetic field and neglecting exchange in the first equation: 
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Separating the equality for the domain wall width from the second equation 
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which gives the same expression for the domain wall width as above. 

With this treatment one can easily come to a conclusion that steady motion of domain walls with constant 

angle  is impossible without persistent current to compensate for damping. The corresponding velocity 

is 
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The expression is similar (apart from a geometry factor) to the velocity of domain walls driven by in-

plane current. 

In contrast we are focusing on sufficiently long movement of domain walls without a persistent current. 

Energy dissipation 

In fact, damping does sap energy from domain wall motion. 

The change of energy with time is 
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The terms in LLG corresponding to the effective field are orthogonal to the effective field and thus do not 

change the energy. This is understandable since these are terms conserving energy. In the absence of spin 

torque, the only term which dissipates energy is Gilbert damping 
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In spherical coordinates it reduces to  
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In other words 
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For the case of constant angle  , it simplifies to  
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Which amounts to non-zero energy dissipation proportional to a small Gilbert damping constant. 

Therefore we hope that the domain wall can travel over a time of hundreds of characteristic precession 

periods. 

Decelerated domain walls 

Let us examine once again the LLG equations with no driving force, i.e. external field or spin torque. We 

will no longer neglect damping. We assume that angle )(t  and velocity )(tu  can now be functions 

of time but not coordinates tied to domain wall 
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Re-introducing the domain wall width and shape, we arrive at  
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Then substituting the shape function for the decelerating domain wall 
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Which obeys the relation 
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These equations allow us to first obtain the change of angle in time, and then determine the domain wall 

velocity. Their solution is 
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The equation for velocity can be solved numerically 
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The qualitative behavior:  the angle decreases towards zero, and the velocity decreases. A rough estimate 

of the time to slow down is 
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And the distance traveled 
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Which can be around 1000nm for the domain wall width of 20nm. 

 

Figure 9. DW velocity and angle vs. current for in-plane magnetization, pulse ns5.0 , with zero field-

lie torque.  

 


